CITY OF ARROYO GRANDE

Pavement Management Plan 2016 Update Report

Submitted to:
City of Arroyo Grande
300 E. Branch St
Arroyo Grande, CA 93420

EXECUTIVE SUMMARY

This Pavement Management Program (PMP) has been developed for the City to implement a systematic program of maintenance, repair, and improvement of the streets of Arroyo Grande. The recommendations were based on Metropolitan Transportation Committee's (MTC) StreetSaver, which uses eight asphalt concrete (AC) and eight portland cement concrete (PCC) distress type protocols (modified from the American Society for Testing and Materials (ASTM) D6433 standard). In 2015, the City began using StreetSaver, a pavement management system, commonly used by California municipal agencies. StreetSaver was utilized in part for the development of the City's updated PMP. The updated PMP recommends optimal strategies and estimated costs for street improvements to obtain a desired pavement condition index (PCI). A pavement condition index is a rating system between 0 and 100 indicating the overall condition of the road segment(s).

Four general maintenance and rehabilitation categories were considered for this PMP program; Light Maintenance, Heavy Maintenance, Light Rehabilitation, and Heavy Rehabilitation. Annual pavement maintenance and rehabilitation projects were developed for the next seven years using a critical PCI approach. StreetSaver defaults to a seven year review for the purposes of including short-term and long-term outlooks of the City's street maintenance and rehabilitation program, however, the City may elect to analyze the data and project budgets based on any desired length of time. For this report, we are providing a seven year analysis.

The overall result from the evaluation of the City's street system indicates the City's overall weighted average PCI is 68 . Although this is below the targeted PCI value of 70 for most California cities, it surpasses the overall PCI value of SLO County (63 PCI), Grover Beach (42 PCI), Pismo Beach (73 PCI), San Luis Obispo (71 PCI), Morro Bay (66 PCI), Atascadero (47 PCI), and Paso Robles (62 PCI). This information is included to assist the City and community members in gauging what the different PCl values actually mean when they drive through these neighboring cities and county.

PCI values are also broken down into sub-categories known as functional classes. The functional classes identify each road segment as arterial, minor arterial, collector, residential, and other. To best understand the difference of these functional classes it is easiest to understand if one considers residential streets to be the least busy with traffic up to arterials with the highest levels of traffic. Residential streets are generally quiet with trash trucks and postal trucks generating the largest load impacts to the roadway. Collector streets generally accept traffic from multiple residential streets and then channel the traffic onto arterial streets leading to highways and freeways. Functional classes of Other are place holders simply to inventory the City's parking lots, alleys, or private street segments. They do not affect the overall PCI value of the City's street network. Below is a table identifying the PCI values of each functional class within the City.

City of Arroyo Grande PCI Values by Functional Class

Functional Class	Centerline Miles	PCI
Arterial	4.4	75
Minor Arterial	9.1	69
Major Collector	12.5	64
Residential/Local	41.9	70
Total	67.9	68

Although the PCl values are reasonably close to the target of 70 PCl , our firm has reason to believe, based on a systematic visual inspection of each road segment, that the overall PCI value of 68 is artificially inflated because the recent resurfacing projects performed over the last five fiscal years likely have masked critical pavement failures which could not be accounted for during this pavement evaluation process. Resurfacing treatments are typically used for light maintenance; however, it is likely resurfacing treatments were used on streets with pavement distresses requiring heavy maintenance or rehabilitation due to budget constraints. It is difficult to say how inflated the average PCl value is. Visual inspections are good for about three years and we recommend having another inspection at that time to evaluate the deterioration rates of such streets.

RECOMMENDATIONS

After the evaluation and analysis processes and after updating the StreetSaver database, we recommend the City perform the following work to achieve a target average PCl of 70 for the City's street network.

1. Utilize the "Critical Point" decision making strategy for selection of future road rehabilitation projects.
2. Update the StreetSaver database each time work is completed.
3. Implement a street subsurface evaluation program, that includes core sampling and deflection testing
4. Continue the crack sealing program.
5. Strictly enforce the City's updated trench cut standards and 5-year Pavement Cut Policy (Attached).
6. Encourage use of proven new technologies and materials in pavement design.
7. Enhance the City's current pothole repair program.
8. Update the Pavement Maintenance and Rehabilitation Program annually.

FINANCIAL ANALYSIS

The current annual budget of $\$ 930,000$ does not appear sufficient to maintain the street system at its current PCI level of 68 . StreetSaver estimates a 11 point PCI drop will occur in seven years if the annual budget remains at $\$ 930,000$. By adding $\$ 500,000$ a year for each of the 7 years there will only be an 8 point PCI drop at the end of seven years. To achieve and maintain a PCl of 70 , the City would need to employ alternate strategies and funding sources in order to maintain a Pavement Condition Index acceptable to the community.
TABLE OF CONTENTS
EXECUTIVE SUMMARY 1
RECOMMENDATIONS 3
FINANCIAL ANALYSIS 3
SECTION I - INTRODUCTION AND PURPOSE 5
Pavement Management Goals 8
SECTION II - BACKGROUND 9
Pavement Design Basics 9
Traffic Loads 9
Strength of Native Soil. 11
Pavement Deterioration 12
Typical Pavement Defects 13
Pavement Maintenance 14
Crack Sealing 14
Digouts (Patching) 14
Slurry Seals and Micro-surfacing. 14
Cape Seals 15
Pavement Rehabilitation Procedures 15
Conventional Overlays 15
Heavy Overlay: AC Removal and Replacement (Mill and Fill) 16
Reconstruction 16
SECTION III: THE PMS PROGRAM 17
BACKGROUND 17
Systems Assumptions 17
Pavement Maintenance Priorities 18
SYstem Inventory 19
Pavement Maintenance and Rehabilitation Unit Costs 19
Approximate Pavement Maintenance and Rehabilitation Costs 20
Visual Evaluations 21
System Update 21
SECTION IV: SUMMARIZED SYSTEM INFORMATION 23
SECTION V: RESULTS AND RECOMMENDATIONS 24
Pavement Management Funding Option Results 24
Budget-Driven Scenarios 25
Target-Driven Scenario 26
Recommendations 27
Program Recommendations 28
APPENDICES 30

SECTION I - INTRODUCTION AND PURPOSE

This project consisted of an evaluation of each city street and updating the StreetSaver Pavement Management System (PMS) for the City of Arroyo Grande with road segment data and available road maintenance and repair history

A PMS program has several distinctive uses as a budgeting and inventory tool, while also providing a record of pavement condition. The primary use of any PMS is a budgeting tool with the aim of maximizing the cost effectiveness of every dollar spent on city streets. As an inventory tool, StreetSaver provides a quick and easy reference on pavement areas and usages. As a pavement condition record, StreetSaver provides age, load-related, non-load related, and climate related pavement condition and deterioration information.

A PMS is not capable of providing detailed engineering designs for each street. The PMS instead helps to identify potential repair and maintenance candidate streets. Further investigation of these streets should be performed to determine appropriate detailed engineering recommendations for each road segment. Project level engineering examines the pavements in significantly more detail than the visual evaluation required for the PMS system and provides optimization of the design given all of the peculiar constraints of the project streets.

The PMS software assumes average construction and material quality. Pavement life is very sensitive to materials and workmanship quality. Poor quality new construction may result in up to a 50 percent loss in the pavement life. In other words, poor quality new construction may last 10 to 15 years, whereas excellent quality construction may last 20 to 30 years. Investing in quality, both in design and construction, provides significant returns in extended pavement life resulting in lowered annual maintenance costs.

It is highly recommended the City utilize the Highway Design Manual when designing appropriate street rehabilitation projects to maximize the use of public funds by obtaining the longest anticipated life of the pavement. New technologies for pavement maintenance and resurfacing are introduced on a regular basis and are heavily analyzed by Caltrans. It is recommended the City obtain as much information from manufacturers, contractors, engineering consultants, and Caltrans when evaluating appropriate resurfacing and maintenance treatments for each road segment.

In order to understand the general concept of pavement management systems, one needs to understand the concept of pavement deterioration. In summary, all pavements deteriorate under load impacts and weather conditions. Load related impacts are termed axle loads and are simply the weight of a vehicle transferred through the axles, through the tires, and into the pavement on which we drive. Weather related impacts include water penetration, heat, freeze, UV exposure, and many other commonly experienced weather effects. As pavement is subjected to traffic loads and weather, it deteriorates; however, if the City is proactive in maintaining and rehabilitating the roadways it is possible to greatly extend the life of pavement using low cost methods
which slow down the deterioration process.
To illustrate this concept we have provided some graphs below.

Figure 1 - Typical Pavement Deterioration Curve

Figure 2 - Typical PCI Drop vs. Percent of Pavement Life

Figure 3 - Approximate Maintenance and Repair Costs
(Possible repair and maintenance listed for reference only. Repairs and maintenance should be determined by the Engineer of Work for each specific project.)

Figure 4 - Preferred Maintenance and Repair Approach

Figure 5 - Least Effective, but common, Approach

PAVEMENT MANAGEMENT GOALS

The PMP for the City of Arroyo Grande has five primary goals as follows:

1. Update and implement the StreetSaver program.
2. Provide an accurate and complete inventory of the City's existing pavements and condition.
3. Identify and quantify maintenance and rehabilitation needs for the street system.
4. Develop an annual plan for the maintenance of the streets.
5. Recommend a budget for the City street system.

A full appreciation of a pavement management system and the value of its data and cost projections depend on a basic understanding of pavement design basics. These are provided in Section II: Background. Section III provides information on the PMS Program specifics incorporated into the program. Section IV provides Summarized System Information in the form of easy to read tables and figures. Section V provides a set of policy and program recommendations for future pavement management. Two appendices detail the proposed pavement management program and a list of description of pavement distresses.

SECTION II - BACKGROUND

This section is intended to introduce important pavement design definitions and calculations as a background for understanding the Pavement Management System (PMS) assumptions.

PAVEMENT DESIGN BASICS

The two most critical considerations in pavement design include the anticipated load above the pavement and the ability of the native soil to support those anticipated loads. The pavement section is then designed as the medium between the loads and the native soil.

Traffic Loads

Pavements are a structural support system generally considered to act like a beam. But unlike beams in buildings which generally have static loads, the pavement structure is flexed many times from traffic loading. Cars and light trucks have little impact on the pavement structure. Larger/Heavier trucks have very significant impacts to the pavement due to the high axle weights. The impact of trucks is measured in equivalent single 18,000-pound axle loads (ESALs). The total ESALs are converted into a design Traffic Index (TI) by an exponential formula. For example, a design Tl of 5 is equal to 7,160 ESALs. A design TI of 8 is equal to 372,000 ESALs. Therefore, the design TI is related to the total number of ESALs that the pavement will support before it begins to fail, regardless of the passage of time. Normally for a new pavement, the ESALs over a 20-year period are used. For rehabilitation procedures such as overlays, 10 years is generally used. Below are two figures representing the traffic index calculation and ESALs for common vehicles on your roadways.

Strength of Native Soil

The other element of pavement design is the support of the native soil subgrade which supports the anticipated traffic loads. The support value is designated by the R-value (resistance value) test, which is performed by a soils engineer. The R-value test indicates how well the native soil can resist traffic loads. If a native soil subgrade has a high R-value it will result in a relatively small asphalt structural section. If a native soil subgrade has a low R-value it will result in a relatively thick asphalt structural section.

Using the anticipated design Tl values and laboratory R -value test results, the pavement designer chooses various materials to construct the structural section. The most common pavement section is a thin layer of asphalt concrete over aggregate base(s). Below are two examples of pavement design sections with varied R -Values. The first example shows pavement sections for typical residential streets with varied soil types. The second example shows pavement sections for typical arterial streets with varied soil types. The purpose of these examples is to show how pavement sections can vary depending on many factors.

RESIDENTIAL STREETS

TI $=5.5$	$\mathrm{TI}=5.5$	$\mathrm{TI}=5.5$	
	R -Value $=5$	R-Value $=40$	R-Value $=75$

RESIDENTIAL STREETS - PAVEMENT DESIGN RESULTS

Asphalt $=0.25$ feet	Asphalt $=0.25$ feet		Asphalt $=0.25$ feet Agg Base $=0.98$ feet
	Agg Base $=0.42$ feet	Agg Base $=0.35$ feet	

ARTERIAL STREETS

TI = 9.0	$\mathrm{TI}=9.0$	$\mathrm{TI}=9.0$
R -Value $=5$	R-Value $=40$	R-Value $=75$

ARTERIAL STREETS - PAVEMENT DESIGN RESULTS

Asphalt $=0.46$ feet
Agg Base $=1.71$ feet

Asphalt $=0.46$ feet
Agg Base $=0.79$ feet
Asphalt $=0.46$ feet
Agg Base $=0.35$ feet

It is not recommended to require a standard pavement section because soil types can (and often do) vary even in close proximity to one another. It is recommended to design pavement maintenance and rehabilitation specific for each road segment.

Also very important, the City should require new streets in proposed developments to be constructed to engineering designed pavement sections using anticipated TI values, provided by the City, and R-value test results taken by the developer. This will reduce maintenance and rehabilitation costs by City once after development is completed. The standard pavement section table currently provided by the City should be replaced with a requirement for engineering design following the highway design manual.

Pavement Deterioration

Pavement deteriorates from two processes: fatigue and aging. The processes occur simultaneously. In a well designed and constructed pavement, the two processes result in the need to rehabilitate the pavement at approximately the same time. This is called the design life. The design life for the newest pavements is 20 years. Each aging process has its own set of pavement defects which are related to the process.

Fatigue

The first deterioration process is fatigue from heavy axle loads. As the pavement structure flexes or bends from heavy wheel loads, the asphalt concrete layer's ability to flex is consumed. (The impact of one trash truck trip on a road segment is roughly equivalent to 1,000 car trips.) With sufficient bending, the asphalt concrete layer begins to break at the bottom. This cracking progresses upward until it reaches the surface and appears as alligator cracking. If left unattended, they will produce a pothole. These areas are repaired by removal and replacement of the asphalt concrete in the affected areas. These repairs are commonly called digouts.

Aging

The major element of the pavement structure which ages is the asphalt concrete layer. To a minor extent, aggregate bases can age if contaminated by fine soil particles which are transported from the subsoil into the aggregate base.

Asphalt concrete is composed of aggregates and asphalt cement. The aggregates used are generally of fair quality and do experience some breakdown over time. Aggregate aging problems need to be addressed in maintenance procedures. The asphalt concrete binder ages as well. As the asphalt binder ages, it loses volume through loss of volatile components in the asphalt. As the volume decreases, the pavement will progressively crack from the resulting tensile strain in the layer. Normally, these cracks first show up as transverse cracks. They also show up at weak areas such as paving joints. These cracks widen and increase over time until the pavement has a checkerboard appearance.

The aging process also causes the pavement to become more brittle. The increased stiffness results in additional cracking from loaded vehicles. This load induced cracking from the brittleness of the asphalt concrete is very similar to fatigue cracking in appearance. The major agent for deterioration of the asphalt concrete binder is oxygen. The carrier of the oxygen is water. Water enters the pavement either from the surface or as water vapor from underneath.

Typical Pavement Defects

StreetSaver analyzes eight different distress types that include

1. Alligator Cracking (Fatigue Cracking)
2. Block Cracking
3. Distortions
4. Longitudinal and Transverse Cracking
5. Patching and Utility Cut Patching
6. Rutting/Shoving
7. Weathering
8. Raveling

For purposes of understanding the character and levels of these distresses, the pavement defect descriptions from the rating manual are included in the Appendix.

PAVEMENT MAINTENANCE

Pavement maintenance procedures are designed to slow the pavement aging process. Mainly, the procedures are designed to protect the pavement from the adverse effects of age, water and to some extent wear from vehicle traffic.

Maintenance procedures which protect the pavement from aging are crack sealing, digouts, slurry seals, and cape seals. When pavements have extensive cracking and are beyond their design life, sealing can also be used as an interim holding measure or stop gap prior to major rehabilitation.

Crack Sealing

Crack sealing prevents surface water from getting beneath the asphalt concrete layer into the aggregate bases. Crack sealing is generally performed using hot rubberized crack sealing material. The procedure includes routing small cracks, cleaning and sealing. The City has an annual Crack Sealing program whereby City staff rents a crack-fill machine, purchases crack seal material and applies the material using our Public Works Department Maintenance Workers. City staff generally applies crack seal to road segments scheduled for resurfacing the same year.

Digouts (Patching)

Digouts are small areas of deteriorated pavements (usually potholes) which are removed and replaced with new asphalt concrete. Pavement removal is accomplished by cold planning (grinding) or saw cutting and excavation. New asphalt is then installed to the excavated area... The digout depth is determined depending on the severity and type of distress, as well as street type and construction. Shallow patching is often used on low to medium severity distressed areas of pavement where the underlying base is sound, while a full depth digout is required when the failure of the base material is detected. Digouts are generally performed by the City crew, though digouts repairs are often required in preparation for a contracted slurry seal.

Slurry Seals and Micro-surfacing

Slurry seals consist of a combination of fine aggregate and emulsified oil used on relatively good streets to preserve and extend pavement life. Slurry seals are also a cost effective treatment for streets whose major form of distress is severe weathering or raveling. Micro-surfacing is similar to a slurry seal with added polymers that allow the application of thicker layers and added service life. The added thickness of micro-surfacing makes it a good choice to correct rutting. Microsurfacing is commonly used by public agencies in San Luis Obispo County as a routine street sealing treatment, providing excellent results with a life expectancy of approximately 8 years. The City of Arroyo Grande has used micro-surfacing treatments periodically since 2010.

It is important to note that the United States Department of Justice (DOJ), in coordination with the Federal Highway Administration, has determined that Road

Alteration (Rehabilitation) projects trigger the requirement for Americans with Disabilities Act (ADA) improvements. The DOJ and FHWA have determined that the Micro-surfacing treatment is classified as an alteration, triggering the installation of ADA compliant wheel chair ramps and street corners adjacent to the altered road segment. This federal mandate also requires that any existing curb ramps that do not meet the ADA standards in affect after 1991 are updated. This requirement has the potential to significantly increase the cost of a road rehabilitation project where an "alteration" is completed.

Cape Seals

Cape seals consist of a chip seal with a slurry seal placed on top. A chip seal is an application of small angular rock (chips) approximately $1 / 4$ " to $3 / 8^{\prime \prime}$ in maximum size embedded into a thick application of asphalt emulsion. Most chips seals incorporate polymer modified binders.

Cape seals are used on residential and collector streets to maintain a pavement which may need an overlay, but there are not sufficient funds available. Chip seals are placed over low to moderate alligator cracks and block shrinkage cracking. Due to the distress covered by the chip seal, small areas of dis-bonding or failure may occur and will require patching.

Cape sealed surfaces are fairly coarse compared to new paving. Due to this characteristic, they may not be Appropriate for high volume road segments in urban areas. This treatment is more commonly used on rural, low volume road segments.

Though chip seals were used extensively in Arroyo Grande prior to incorporation, many of the streets that received this treatment did not have a stable base and subsequent deterioration has resulted. Cape seals have never been used in Arroyo Grande but are being considered as a pavement treatment option in the near future on streets with a stable base. They may also be used as an interim holding measure to "hold" the pavement together until funds become available for major rehabilitation. Cape seals are also considered alteration by the DOJ/ FHWA and as a result trigger ADA upgrades.

PAVEMENT REHABILITATION PROCEDURES

Pavement rehabilitation consists of procedures used to restore the existing pavement quality or to add additional structural support to the pavement. Rehabilitation procedures include conventional asphalt overlays; heavy overlays: and reconstruction.

Conventional Overlays

Conventional overlays generally consist of surface preparation, the optional installation of pavement fabric, followed by the application of varying thicknesses of asphalt concrete. Surface preparation can consist of crack filling, pavement repairs of base failures and leveling courses.

Pavement fabric is often used as a water inhibiting membrane and to retard reflective cracking. Reflective cracking occurs when native soil subgrade is not strong enough (does not have a high R-value) to support the asphalt when a heavy vehicle drives on the roadway. The bottom of the asphalt section cracks under loading and over time the crack propagates to the street surface. Care must be used with fabric to avoid intersections with heavy truck braking, steep grades (generally over 8 percent), and areas where subsurface water might be trapped.

The overlay thickness is determined by the structural requirement of the deflection analysis and reflective cracking criteria. The reflective cracking criteria requires the thickness of the overlay to be a minimum $1 / 2$ the thickness of the existing bonded layers. Pavement fabric can account for 0.10 ft of asphalt for reflective cracking criteria if the structural requirements from the deflection analysis are met.

Conventional overlays have an expected service life of 7 to 13 years if they are designed to meet structural and reflective cracking criteria and are well constructed.

Heavy Overlay: AC Removal and Replacement (Mill and Fill)

On some thick asphalt concrete pavements, the most economical approach to rehabilitating the pavement is to remove some of the existing asphalt concrete surface by cold planning (grinding) and placing new asphalt concrete surface which matches the existing profile. This method may be required if the pavement profile is already so thick that the additional thickness obtained from recycling the existing pavement is unacceptable due to drainage, street geometry, or other concerns. The removed asphalt can often be recycled and reused on other streets if concurrent projects are planned appropriately. Depending on existing conditions, this method should have a life of 15 to 20 years.

Reconstruction

When the pavement has severe cross section deficiencies or requires significant structural strengthening, reconstruction may be the only alternative. Generally, existing pavement materials are recycled and incorporated into the new pavement structure in a process called Full Depth Reclamation (FDR). This method minimizes the importation of new base material and virtually eliminates export of material to landfill sites. Engineered emulsion binders are mixed with the existing materials to form a base that is equal to or superior in strength to new aggregate base. For reference, a majority of the recently completed Oak Park Boulevard Rehabilitation Project by the Grover Beach was an FDR project.

SECTION III: THE PMS PROGRAM

This section discusses the characteristics of the PMS program and its application to the City of Arroyo Grande.

BACKGROUND

A pioneering, computer-based pavement management system (known as StreetSaver) developed by the Metropolitan Transportation Commission (MTC), is helping Bay Area cities and counties better maintain their local streets and roads.

In 1982, MTC completed a study of local road and street maintenance needs and revenue short falls in the San Francisco Bay Area. The results of the study indicated that local jurisdictions were spending only 60 percent of funds required to maintain roads in a condition considered adequate. This indicated a need to improve pavement maintenance and rehabilitation techniques and practices. A committee was formed to evaluate pavement management efforts. At approximately the same time, six public works directors reviewed a proposal to develop a prototype PMS; however, it was felt that the proposed system was too complex. This group strongly emphasized that simplicity was the most important objective to be developed in a PMS if it was to be adopted and used by cities and counties.

In 1983, a consultant was retained to assist MTC in determining PMS needs, resources, and problems. In addition, they were to develop three basic elements of a standardized prototype PMS: a pavement condition index (PCI), effective maintenance treatments for the Bay Area, and a network level assignment procedure. The result was the first version of the MTC PMS in 1987.

With the release of version 8 in 2003, MTC has renamed MTC PMS to StreetSaver. The StreetSaver v. 8 Online was launched in April 2005. MTC becomes the first and is the leader in cloud-based provider for pavement management software. The latest version of the StreetSaver v. 9 Online, .NET edition was released in July 2008.

With more than 25 years of experience in pavement management and continuing research and development, StreetSaver has become the most utilized software in the West Coast. Several Central Coast municipal agencies also use the StreetSaver pavement management tool.

SYSTEMS ASSUMPTIONS

The PMS program makes several basic assumptions regarding the degradation of pavements. The basis of the system is the Pavement Condition Index (PCI). New pavements with no defects receive a score of 100. From this score, the program deducts points based on defect type and severity identified during the visual review. After the initial PCl for a street segment is determined, the program reduces the PCl on an annual basis using preset deterioration curves. Placement on the deterioration curve is determined by the date of original construction or most recent overlay. The PCl is increased when a maintenance or rehabilitation activity is performed.

The system uses standard treatments to raise the PCl based on the original PCl . The treatment strategies include light maintenance, heavy maintenance, light rehabilitation, and heavy rehabilitation. Examples of these strategies are identified in Section II above.

The system ratings do not take into account geometric constraints in the system such as excessive street cross slopes, heights of curbs in median, or thickness of curb and gutter pans. These geometric constraints often make some procedures inapplicable. For example, when StreetSaver recommends an overlay it does not take into account all of the fixed infrastructure neighboring the roadway such as curb and gutter. You cannot place a two inch asphalt overlay next to concrete curb and gutter because the asphalt would sit higher than the concrete. This requires the contractor to remove the existing asphalt immediately adjacent to the gutter pan so the surface of the new asphalt will match the surface of the existing concrete gutter pan. The system also does not include miscellaneous costs, at this time, such as associated concrete repairs or sidewalk improvements. StreetSaver is still being modified continually to include various inventory functions to account for miscellaneous items of work such as concrete sidewalk, ADA ramps, and curb and gutter replacement. Since those features do not currently exist we have included multipliers in the estimated unit costs to cover such anticipated expenses in the budget.

Maintenance treatment recommendations are based on certain PCI and pavement distress level thresholds, some of which are adjustable by the user and others are not. Due to these assumptions and program simplifications, the PMS program designated maintenance treatment for a given street may not be precisely what that particular street requires. The PMS program identifies candidate streets for various treatment types. The project engineer then visually reviews the streets. Depending on the condition, a specific maintenance treatment can be specified, or in the case of major rehabilitation, additional testing may need to be performed to identify which specific maintenance or rehabilitation approach may be most economical.

The goal of the PMS program is to furnish budgetary amounts in order to achieve system wide improvements in the overall pavement condition. The goal of the project engineering is to obtain the maximum economic impact for a given subset of the system to be maintained. Using the PMS program, management is able to realistically budget for an economical approach to maintaining the City's street network. Annually updating maintenance activity and costs is highly recommended as it will help keep the PMS system current..

PAVEMENT MAINTENANCE PRIORITIES

Though the initial selection of streets, scheduling of work, and choice of treatment is made by the StreetSaver program with the goal of maximizing the impact of pavement management dollars, several user-defined criteria guide the program in the way it processes data. These key criteria include:

- Achieve and maintain an average PCI of 70 or higher for all city streets with no street below a PCI of 55 .
- Give priority to more heavily traveled streets. The order of priority has been set as arterial, collector, and residential, in that order.
- Preventative maintenance on streets with a low surface area percentage of distresses is the best use of funds. Dig-out repairs followed by slurry seal or micro-surfacing treatment measures can be used as appropriate. Priority is given to streets that are at risk of dropping into a lower PCl range requiring rehabilitation.
- Rehabilitation measures are generally required for streets with a PCI in the range of 55 to 70 or high surface area percentage of distresses. Priority is given to streets that are at risk of dropping into a lower PCl range requiring full reconstruction.
- Reconstruction measures are generally required for streets with a PCI less than 55 .

SYSTEM INVENTORY

The street classifications (arterial, collector, and residential) assigned in this report were determined by Caltrans. Since pavement life is directly proportional to the types and weight of vehicles, the City should periodically review and upgrade the classification of streets so the PMS can correctly identify rehabilitation and maintenance strategies and account for the increased truck traffic.

All streets were measured using a vehicle mounted measuring device for length and a hand held measuring wheel for width. In the case of cul-de-sacs, StreetSaver adjusts the area to account for the additional pavement area in the cul-de-sacs bulbs. Widths were measured from edges of asphalt, excluding curb and gutter. Widths of collectors and arterials were adjusted to account for pavement in turn pockets. An alphabetical listing of the streets, broken into their segments is available in the appendix.

PAVEMENT MAINTENANCE AND REHABILITATION UNIT COSTS

The following costs were used to develop the indicated budget numbers for each street segment reviewed. The costs include miscellaneous work such as dig-outs, pavement markings and traffic lane striping. .

The estimated costs are based on unit cost averages for previous road repair and maintenance projects. Small projects will have higher unit costs and large programs will have lower unit costs. The larger the annual program size, the better the economies of scale. Timing is also important. Bidding the work in early spring may result in lower prices than bids solicited in the late summer or fall. If small packages are used, costs could be 25 to 50 percent higher.

The estimated costs below reflect prices for work completed within the county over
the past few years, including data from within the City and estimated costs from other agencies using StreetSaver. The developed unit costs include striping and other lump sum project costs for each street segment. The costs per street segment were then averaged and rounded to produce the indicated unit costs. The unit costs include a 10% contingency and a 15% allowance to account for engineering design fees and inspection. These prices are in today's dollars (July 2016) and do not account for inflation.

Work performed by the City crews is also included in the unit costs. Such work includes crack sealing, weed abatement, and potholing.

Approximate Pavement Maintenance and Rehabilitation Costs

Treatment Description	Arterial		Collector		Residential	
	Est. Costs $(\$ / S Y)$ (\$/SY)	$\begin{aligned} & \text { Est. } \\ & \text { Life } \\ & \text { (Yrs) } \end{aligned}$	$\begin{aligned} & \text { Est. Costs } \\ & (\$ / \mathrm{SY}) \end{aligned}$	$\begin{aligned} & \text { Est. } \\ & \text { Life } \\ & \text { (Yrs) } \end{aligned}$	Est. Costs (\$/SY)	$\begin{aligned} & \text { Est. } \\ & \text { Life } \\ & \text { (Yrs) } \end{aligned}$
Reconstruction	\$117.00	15-20	\$102.38	15-20	\$87.75	15-20
Heavy Rehabilitation	\$60.00	12-15	\$52.50	12-15	\$45.00	12-15
Light Rehabilitation	\$42.00	8-12	\$36.75	8-12	\$31.50	8-12
Heavy Maintenance	\$16.40	5-8	\$14.35	5-8	\$12.30	5-8
Light Maintenance	\$3.24	3-5	\$2.84	3-5	\$2.43	3-5

The estimated unit costs reflected above include construction, design, and special inspection. The costs above due not account for annual inflation.

The costs were calculated based on recent past projects performed within the City of Arroyo Grande as well as neighboring cities. There are many pavement maintenance and rehabilitation options to consider for each street improvement project, however, in an effort to estimate construction costs we assumed pavement treatments for each category of maintenance or repair as listed below. The estimated base cost includes average construction pricing for applicable assumed treatments and does not include administrative costs for city project management, engineering design, construction management, special inspections, or construction contingency. In order to account for these additional costs we assumed a multiplying factor for arterial, collector, and residential streets in the amount of 2.0 , 1.75 , and 1.50 , respectively.

Maintenance or Repair	Assumed Treatment	Est. Base Cost (\$/SY)
Reconstruction	13" Aggregate Base + 3" Asphalt Pavement	$\$ 58.50$
Heavy Rehabilitation	25\% Digouts + Pavement Fabric + 2" Asphalt Overlay	$\$ 30.00$
Light Rehabilitation	Pavement Fabric + 2" Asphalt Overlay	$\$ 21.00$
Heavy Maintenance	Microsurfacing + Chip Seal + Microsurfacing	$\$ 8.20$
Light Maintenance	Microsurfacing	$\$ 1.62$

Since life cycle cost analysis is part of developing annual maintenance and rehabilitation programs, some general life expectancies should be identified. For a typical light maintenance treatment, a service life of 3 to 5 years can be assumed. A heavy maintenance treatment may provide a service life of 5 to 8 years. A typical conventional overlay, whether light or heavy, has an expected service life of 8 to 12 years. Depending on the existing pavement and soil conditions, other rehabilitation options can be applied that will provide a service life of up to 15 years. A reconstructed pavement is expected to provide a service life of 20 years.

Depending on the existing conditions, the identified service life may vary. The projections of future life are given to provide a broad outline for pavement maintenance budgeting. They should not be interpreted as providing definitive predictions of future pavement performance.

Visual Evaluations

All of the pavements were evaluated by two field technicians and 5% of the analysis was checked through Rick Engineering's quality control process. The Road rating was performed pursuant to the Pavement Condition Index Distress Identification Manual for Asphalt and Surface Treatment Pavements (April 2012, Third Edition (Revised)).
*A color coded map and a list of each street with their current PCI is available in the appendix.

System Update

The following updates were made to Street Saver to allow the City to make financially-sound decisions regarding the City's street network.

1. Road Segments - The roadways were re-segmented to reflect logical start and stop limits of road segments based upon existing conditions of the pavement. For example start and stop points were modified based on asphalt conditions, road width changes, or similar. All segment lengths and widths were updated to reflect field measurements, eliminating previous measurements which were estimates taken from Google Earth or Google Street View.
2. Historical Records - Historical maintenance and repair data was inputted for each road segment.
3. PCI Values - Each road segment was evaluated in the field and from the data obtained StreetSaver provided a PCI value representing the condition as of July 2016.
4. GIS - The mapping component was updated through the combined efforts of City staff and Rick Engineering staff. Limits of City streets were properly identified and distinguished from neighboring jurisdictions. Neighborhood zones were also created to assist the City in future planning purposes.

SECTION IV: SUMMARIZED SYSTEM INFORMATION

The City of Arroyo Grande currently maintains 66.3 centerline miles (137.9 Lane Miles) of roadways (approximately $8,030,178$ square feet of pavement). This represents an asset with a replacement value of approximately $\$ 180,000,000$. (See GASB 34 - Cost Summary)

Data was collected for the City's street network using StreetSaver PMS Version 6.1. The current weighted average PCI (Pavement Condition Index) for the street system is 68 based on the PMS update performed by Rick Engineering; however, there is reason to believe this PCl value may be falsely inflated. There were many streets which appear to be recently sealed with a surfacing treatment such as a slurry seal or micro-surfacing seal that had severe alligator cracking or other asphalt failures, prior to the resurfacing. Although resurfacing treatments can be cost-effective, they must be placed on existing asphalt surfaces appropriate for their application. Within 3-5 years we would expect the asphalt pavement failures to manifest themselves through the resurfacing seals placed within the last three years. Another PMS database re-evaluation should be performed to identify the actual PCI values of the road segments. All analyses performed in this report included the average PCl value of 68 and no adjustments were made at this time.

The street network for the City of Arroyo Grande includes the following:

Functional Class	Lane Miles	Area (Square Feet)	Percent of Svstem	Average PCI
Arterial	9.4	863,800	6.3%	76
Minor Arterial	20.0	$2,173,525$	16%	69
Major Collector	25.1	$2,539,705$	18.7%	68
Residential/Local	83.4	$7,529,800$	55.3%	70
Other*	N / A	505,625	3.7%	68
Total	137.9	$13,612,455$	100%	68

* Other - Includes City parking lots, water tank access roads, and a fire access road Note: Private roads are included in the inventory, but excluded from the budget analysis.

SECTION V: RESULTS AND RECOMMENDATIONS

There are three general approaches that may be taken for pavement management and selection of the specific road segments for resurfacing;

1. Worst First: The approach selects the worst condition road segments for repair and resurfacing. This approach results in the highest unit cost approach and does result in preventative maintenance for better condition road segments.
2. Pre-Established Schedule: An established schedule of future road resurfacing and repair projects prepared strictly on an annual rotation based on a projected time frame during which all road segments would receive some type of resurfacing. This approach does not address the cost effective needs of the road network but is often received well by members of the community because they can see when their own street is scheduled for maintenance.
3. Critical Point:This approach selects the road segments for repair or resurfacing that are at a "critical point" of deteriorating. The critical point is a point located on the pavement deterioration graph which indicates the PCl value is about to drop which would trigger a more expensive maintenance or rehabilitation approach. Catching the pavement section at the appropriate time results in the most cost effective approach and still meets the needs of the community.

The Critical Point road segment selection approach is recommended regardless of a projected schedule or resurfacing program. The drawback to this approach is that it does not necessarily provide property owners with a certain date for resurfacing of the road segment fronting their property. The PMS system will annually evaluate and provide recommendations for repair and resurfacing based on this critical point approach. The critical point road segment selection approach is the most economical pavement management approach and will assist the City is achieving the targeted overall PCI value in the shortest amount of time.

PAVEMENT MANAGEMENT FUNDING OPTION RESULTS

There are two separate approaches to funding the City's pavement management program, including a budget-driven scenario and a target-driven scenario. The budget-driven funding scenario identifies the resulting PCl value over time based on a pre-determined pavement management budget. The target-driven approach identifies the estimated budget over time based on a targeted PCI value. Both approaches are identified in more detail below.

The following results were generated from Street Saver analyzing both budgetdriven and PCI Target-driven scenarios.

Budget-Driven Scenarios

Two budget-driven scenarios were analyzed. The first analysis shows the projected PCl if the current budget is maintained. The second analysis shows the projected PCl if the current budget is increased $\$ 500,000$ annually. This second analysis indicates the results had the SLOCOG Bond Measure J passed in the recent election in the past month of November. A similar bond measure may pass the second attempt by SLOCOG but the timing for the tax initiative is currently unknown.

Approximate Allocated Costs over 7 Years

Current Budget		Arterial	Collector	Res/Local	Other	GRAND TOTALS
	Rehab	\$1,407,672	\$1,187,723	\$3,494,043	\$194,812	\$6,284,250
	Prev. Maint.	\$74,088	\$62,512	\$183,897	\$10,253	\$330,750
	Total	\$1,481,760	\$1,250,235	\$3,677,940	\$205,065	\$6,615,000
Current Budget +\$500K		Arterial	Collector	Res/Local	Other	GRAND TOTALS
	Rehab	\$2,152,472	\$1,816,148	\$5,342,743	\$297,887	\$9,609,250
	Prev. Maint.	\$113,288	\$95,587	\$281,197	\$15,678	\$505,750
	Total	\$2,265,760	\$1,911,735	\$5,623,940	\$313,565	\$10,115,000

Projected PCI Values over 7 Years

2017		$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 1}$	$\mathbf{2 0 2 2}$	$\mathbf{2 0 2 3}$	
Current Budget	Without Treatment	68	66	63	61	58	56	53
	With Treatment	69	67	66	64	62	60	58
Current Budget +\$500K Annually	Without Treatment	68	66	63	61	58	56	53
	With Treatment	69	68	66	65	63	62	61

Target-Driven Scenario

A target-driven scenario was analyzed targeting an average street network PCl value of 70 are the results.

Below are the total estimated costs and projected average network PCl values for the target-driven approach to achieve an average $\mathrm{PCI}=70$ within 7 years.

Approximate Costs over 7 Years to Maintain $\mathrm{PCI}=70$

	Arterial	Collector	Res/Local	Other	GRAND TOTALS
Rehab	$\$ 938,285$	$\$ 4,457,766$	$\$ 14,003,562$	$\$ 161,801$	$\$ 19,561,414$
Prev. Maint.	$\$ 331,520$	$\$ 271,002$	$\$ 976,173$	$\$ 24,980$	$\$ 1,603,675$
Total	$\$ 1,269,805$	$\$ 4,728,768$	$\$ 14,979,735$	$\$ 186,781$	$\$ 21,165,089$

Projected PCI Values over 7 Years

	2017	2018	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 1}$	$\mathbf{2 0 2 2}$	$\mathbf{2 0 2 3}$
Without Treatment	68	66	63	61	58	56	53
With Treatment	70	70	70	70	70	70	70

RECOMMENDATIONS

After a full analysis of the street network and update of the pavement management system database, Rick Engineering recommends the City consider options to increase funds to maintain an average network PCI value of $\mathrm{PCI}=65$ for residential streets and $\mathrm{PCI}=70$ for arterials and collectors. We recommend the City pursue this target-driven approach rather than a budget-driven approach. The target-driven approach keeps PCl values from dropping below the critical points along the pavement degradation curve. By keeping the PCl above these critical points the overall street budget will be minimized in the long-term. If a budget-driven approach is taken, the results are costly and will likely require heavy rehabilitation or replacement of roadways in the future. The target-driven scenario as presented is anticipated to cost an additional \$14.5 Million over the seven-year PMP.

Due to current funding limitations, however, the budget driven approach will need to be employed until additional funding sources are identified. This approach will result in the long term lowering of the City's PCl and the continued degradation of the City's road infrastructure.

Rick Engineering also recommends the following -

1. Regularly update the StreetSaver street condition database: All maintenance, repair and rehabilitation activities should be entered into the StreetSaver database so current street conditions can be tracked and project planning facilitated.
2. Coordinate with the Street Maintenance Division to perform basic preventative maintenance and to record work performed into Street Saver on a regular basis. These measures can affect the PCI values over a long period of time and if maintained regularly, the City will be able to make informed decisions in real time without requiring a potentially lengthy consultation process.
3. Re-evaluate the PMS Street Saver database every 3-5 years. If City staff utilizes Street Saver regularly and enters updates after repair and maintenance projects are completed the re-evaluation can be performed after 5 years. If the database is not updated regularly, a re-evaluation after three years is recommended.
4. Encourage use of new proven technologies and materials in pavement design. There are many cost-effective approaches being presented by manufacturers, contractors, and scholars. Such approaches are often discussed at California Asphalt Pavement Association (Cal APA) meetings as well as other such organized meetings. RICK will gladly provide scheduling information about such events upon request.

PROGRAM RECOMMENDATIONS

Below are some pavement management program recommendations.

1. Institute a regular global maintenance (street sealing) program: The expected life of a good slurry seal or micro-surface treatment is eight years and a cape seal can be expected to last 10 years. Every street in the City should be sealed every 8 to 10 years unless it is scheduled for major rehabilitation. Such a maintenance program will need to be phased in over time, as there are many streets that already exceed this interval and budget does not allow treating them all immediately.
2. Enhance the City's pothole repair program: Pothole repair prevents water intrusion into the supporting soil and can also serve as a "stop gap" repair until major maintenance can be performed. Pothole repair can sometimes involve a simple removal and replacement of the top layer of asphalt, but more often requires full digout of the underlying base and reconstruction of the entire pavement profile. Once the area of pothole patch repairs exceeds 10% of the street area, the street is a candidate for major rehabilitation. The Public Works Department Streets Division is responsible for pothole repairs. Pothole repair requests usually originate from citizens but a more pro-active approach coordinated with the street sealing program will enhance both the life of the pothole repair and the seal coat.
3. Continue the current crack sealing program: Older pavements tend to crack even if the subgrade is stable. Cracks, however, will allow water to enter the supporting soil and destabilize the pavement base. A regular crack sealing program will increase the longevity of streets and delay costlier maintenance and repairs. The Streets Division has the equipment to perform this task. Unlike potholes, which are often reported by citizens, cracks are best identified during periodic inventories. The StreetSaver PMS catalogues cracks that need attention. Sealing cracks prior to micro-surfacing or chip seals will extend the life of the new surface.
4. Create a Green Streets program: Street reconstruction is an opportunity to "go green' through the use of recycled pavement materials and in redesigning drainage to reduce the amount of polluted runoff that enters our creeks and the storm drain system. Green streets usually have bike and pedestrianfriendly components. Such a program is often a good candidate for external grant funding to help stretch City budget dollars.
5. Implement a street subsurface evaluation program: Streets that are scheduled for reconstruction may have adequate materials in the pavement profile to warrant full-depth reclamation of these materials. Depending on the quality and thickness of the existing materials that make up the pavement profile, and a suitable binder material can be designed to be added during the
reclamation process to form a strong base. An evaluation of the pavement profile will provide the necessary data for engineering design of the recycled base.
6. Modify and enforce trench cut standards: Trench cuts can have a significant impact on street durability. Internal coordination with utility master plan projects will help reduce damage to recently paved streets due to planned activities, but trenching for emergency repairs and new developments are inevitable. Diligent enforcement of current engineering standards for trench backfill including the one-year warranty against settlement will help minimize trenching impacts to the pavement. The City standards should also be updated to conform to current material specifications and trench repair technologies.
7. Coordinate with other programs and departments: Street repair and maintenance often impacts other activities, programs and City operations. At a minimum, the following activities should be coordinated with street repair and maintenance:
a. Utility Master Planning and scheduled repairs: Coordination of proposed street and utility work can avoid counterproductive efforts such as trenching in newly repaved streets.
b. City Trees: Urban trees are a valuable resource to communities and have a positive economic benefit, however street work will require periodic trimming and/or removal of trees to accommodate repairs or work within the drip line.
c. Bicycle Traffic: Class 2 bicycle lanes share the paved area of City streets, often on the outside edge or shoulder. Pavement maintenance and overlays should be performed such that sharp edges and ridges in the bicycle lane are avoided. Pavement repair may also present an opportunity to correct or enhance bicycle lane markings.
8. Create a comprehensive Pavement Maintenance and Rehabilitation Program: Based on the above policy recommendations, pavement management system reports, and preliminary field evaluations of the City street system, a comprehensive plan should be prepared for the upkeep, maintenance and rehabilitation of the streets of Arroyo Grande. The program should have several budget alternatives including the use of current budget amounts projected forward. City Council can then choose amongst the alternatives with an understanding of how the adopted program will impact the long term condition of City streets. Though the Program lists projects over a five-year period, budgeting should plan for ten years of work.

APPENDICES

Appendix A - Current PCI Condition Map
Appendix B - Spreadsheet of Current Road Segments and PCI Values
Appendix C - Street Saver Scenario Results
Appendix D - Street Saver Cost Projection Input Data ("Decision Tree")
Appendix E - Description of Pavement Defects

APPENDIX A

Current PCI Condition Map

APPENDIX B

Spreadsheet of Current Road Segments and PCI Values

Note:

1. Streets indicating a PCI Value $=0$ are private streets, streets not in Arroyo Grande City Limits, or unable to be evaluated.

Street ID	Section ID	Beg Location	End Location	Length (FT)	Width (FT)	Area (SF)	PCI
AcornDr	10	Equestrian Way	Equestrian Way	1,500	37	55,500	54
AlderSt	10	Farroll Avenue	Cameron Court	690	38	26,220	57
AlderSt	20	Farroll Avenue	Ash St	1,410	37	52,170	75
AlderSt	30	Ash St	East Grand Ave	1,450	38	55,100	53
AllenSt	10	Traffic Way	Garden Street	2,150	31	66,650	91
AlpineStN	10	Grand Avenue	Faeh Ave	1,058	32	33,856	92
AlpineStS	10	Cerro Vista Circle (EOS)	Cerro Vista Lane	270	32	8,640	74
AlpineStS	20	Cerro Vista Ln	Dodson Way	242	34	8,228	19
AlpineStS	30	Dodson Way	E. Grand	1,430	34	48,620	79
AndreDr	15	Jenny Place	CDS	1,470	29	42,630	82
ArabianCr	10	Vista Drive	Cul-de-Sac	633	37	23,421	65
ArcadiaDr	10	LongdenDr	Sunrise Dr.	10	10	100	0
ArroyoAve	10	Pilgram Way	West Cherry Avenue	607	33	20,031	75
AshSt	10	City Limit (Hermosa Ct)	CIW East of Spruce	1,725	41	70,725	66
AshSt	20	CIW E. of Spuce St	S. Elm St	600	33	19,800	81
AshSt	30	S. Elm St	Alder St	2,030	37	75,110	68
AsiloSt	10	La Canada Street (North end)	La Canada Street (South End)	1,320	29	38,280	90
AsiloSt	20	La Canada	Vista Drive	1,300	29	37,700	94
AspenSt	10	Ash Street	Poplar Street	1,480	37	54,760	60
AvenidaDeD	10	Via Bandolero (North end)	Via Bandolero (South End)	3,200	37	118,400	55
BakemanN	10	Farroll Avenue (East Side)	Farroll Avenue (West Side)	1,400	33	46,200	91
BakemanS	10	Farroll Road (West Side)	Farroll Road (East Side)	1,590	36	57,240	64
BambiCt	10	Tiger Tail Drive	Cul-de-Sac	400	37	14,800	71
BedloeLn	10	West Cherry Lane	Fair Oaks Avenue	500	19	9,500	51
BeechSt	10	Farroll Avenue	Fair Oaks Avenue	700	37	25,900	58
BellSt	10	Grand Avenue (East)	El Camino Real	1,050	35	36,750	87
BennettAv	10	Linda Drive	Halcyon (North)	1,020	35	35,700	75

ত্ম	\bigcirc	\bigcirc	φ	ロ	$\stackrel{0}{\circ}$	～	\pm	\bigcirc	앙	ォ	$\bar{\sigma}$	®\％	∞	へ	\％	8	$\stackrel{\bigcirc}{\sim}$	$\bar{\infty}$	∞	$\stackrel{\sim}{\sim}$	$\stackrel{4}{6}$	L8	N	¢	\bigcirc	$\bar{\infty}$	0
	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ \mathbf{n} \\ \mathbf{n} \end{array}$	$\left\|\begin{array}{l} \underset{\sim}{O} \\ \underset{N}{s} \end{array}\right\|$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \mathbf{8} \\ \mathbf{8} \\ \hline \mathbf{6} \end{array}$	$\left.\begin{array}{\|l\|} \hline 0 \\ ल \\ \stackrel{N}{N} \end{array} \right\rvert\,$	$\left\lvert\, \begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \dot{j} \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \mathrm{O} \\ \stackrel{r}{\mathrm{r}} \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\left.\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 8 \\ 0 \\ \frac{0}{m} \end{array}$	$\begin{aligned} & \hline \stackrel{+}{\circ} \\ & \stackrel{+}{N} \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & \frac{0}{5} \\ & \hline \end{aligned}\right.$	$\begin{array}{\|c\|} \hline 8 \\ \mathbf{c}^{\prime} \end{array}$		$\left\|\begin{array}{l} \bar{m} \\ 0 \\ 0_{0} \end{array}\right\|$	$\begin{array}{l\|} \hline 8 \\ \hline \\ \infty \\ \infty \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ \hat{0} \\ e_{0} \end{array}$	$$	$\begin{array}{\|c\|} \hline \stackrel{n}{n} \\ \underset{\sim}{n} \\ \underset{N}{2} \end{array}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{0} \\ & \infty \\ & \stackrel{\infty}{m} \end{aligned}$	$\begin{array}{\|c} 0 \\ \hline \\ \\ 0 \end{array}$	$\left\|\begin{array}{c} \underset{\sim}{i} \\ \underset{\sim}{m} \\ \bar{n} \end{array}\right\|$	$\left.\begin{array}{\|c\|} \hline 8 \\ 8 \\ 68 \\ 8 \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \text { N} \\ \mathrm{m} \end{array}$	8 0 0 0	$\left\|\begin{array}{c} \underset{\sim}{\underset{N}{2}} \\ \underset{\sim}{2} \end{array}\right\|$	－
$\begin{aligned} & \text { 吾 } \\ & i \frac{E}{3} \end{aligned}$	ले	ल	¢	〒	¢	¢	$\stackrel{\sim}{\sim}$	N	へ	$\stackrel{\sim}{0}$	へ	ले	N	へ	へ	$\stackrel{\sim}{0}$	O	ल	プ	へ	\ddagger	N	안	N	¢	O－ల	N
	앋	$\underset{i}{\circ}$	$\begin{aligned} & \mathrm{O} \\ & \hline- \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$$	$\begin{array}{\|l\|} \hline \mathbf{O} \\ \mathrm{m} \\ \mathrm{r} \end{array}$	$\begin{array}{\|l\|} \hline 8 \\ \hline 8 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{o} \\ & \mathrm{r} \end{aligned}$	$\begin{array}{\|l\|} \hline \stackrel{8}{\circ} \\ \hline \end{array}$	名	$\begin{aligned} & \hline 8 \\ & i \end{aligned}$	\mid	$\begin{array}{\|l\|} \hline \text { প্লি } \\ \hline \end{array}$	$\begin{array}{\|c} \stackrel{N}{m} \\ \stackrel{y}{r} \end{array}$	$\underset{\sim}{\ddot{\circ}}$	$\begin{array}{\|c\|} \hline 9 \\ \hline 6 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \\ \infty \\ \infty \end{array}$	$\begin{array}{\|l\|} \hline \frac{10}{\mathrm{~N}} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ \hline 10 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 8 \\ \infty \end{array}$	$\underset{F}{F}$	$\begin{array}{\|c} \underset{\sim}{2} \\ \underset{r}{2} \end{array}$	$\begin{array}{\|c} \stackrel{\sim}{\mathrm{N}} \\ \underset{\sim}{2} \end{array}$	8	$\begin{array}{\|l\|} \hline \mathrm{O} \\ \hline \end{array}$	$\begin{array}{\|l\|} \infty \\ \infty \\ \infty \end{array}$	－

Street ID	Section ID	Beg Location	End Location
CallieCt	10	Huasna Road	Cul－de－Sac
Cameronct	10	Alder Street	Halcyon Road（South）
CaminoMerc	10	Branch Street（West）	COP West of Walmart Ent．
CaminoMerc	20	COP West of Walmart Entrance	Rancho Parkway
CampanaPI	10	Gularte Road	Cul－de－Sac
CanyonWy	10	Tally Ho	CIW
CanyonWy	20	CanyonWy（CIW）	CDS
CanyonWy	30	CIW	End of Street
CardinalCt	10	Robin Circle	Cul－de－Sac
CarmellaDr	10	Farroll Avenue	CDS
CarolPI	10	Carmella Drive	Farroll Avenue
Carrington	10	Brittany Ave	CDS
CastilloCt	10	Vista Drive	Cul－de－Sac
CastilloDe	10	Orchard Avenue	End of Street
CastilloDe	20	Orchard Avenue	Arroyo Grande High School
CedarSt	10	Aspen Street	Spruce Street
CedarSt	25	Spruce Street	Courtland Street
CeroVistaC	10	Cerro Vista Lane	Alpine Street（South）
CeroVistaL	10	Alpine Street（South）	Cerro Visto Circle
ChaparralL	15	Spanish Moss Ln	Cul－de－Sac
ChelseaCt	10	Brighton Ave	Cul－de－sac
CherryAvE	10	Traffic Way	PC Railway Place
CherryAvE	20	PC Railway Place	Branch Mill Road
CherryAvE	30	Branch Mill Road	End of Pavement
CherryAvW	10	Traffic Way	End of Street（Bedloe Ln）
CherryAvW	20	Arroyo Avenue	End of Street
ChiltonAv	10	Oak Park Boulevard	Robles Road

ত্ম	\checkmark	へ	\bigcirc	$\stackrel{\text { ¢ }}{\text { ¢ }}$	N	$\stackrel{7}{5}$	\bigcirc	\bigcirc	ণ	N	∞	¢	¢	$\stackrel{\infty}{\sim}$	\bigcirc	\bigcirc	$\stackrel{\infty}{+}$	∞	¢	$\stackrel{0}{6}$	へ	か	\cdots	\bigcirc	N	N	\bigcirc
$\begin{aligned} & \underset{\mathscr{O}}{\mathscr{O}} \\ & \underset{\substack{0 \\ \hline}}{\substack{4}} \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{-} \\ & \dot{\sigma} \end{aligned}$	$\frac{8}{8}$	$\begin{aligned} & \circ \\ & \stackrel{R}{N} \\ & N \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{+} \\ & \text { N} \end{aligned}$	$\frac{\stackrel{\circ}{N}}{\stackrel{N}{N}}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { or } \end{aligned}$	\circ $\stackrel{O}{O}$ $\stackrel{N}{N}$	$\begin{gathered} \mathrm{O} \\ \underset{\sim}{\infty} \\ \stackrel{-}{2} \end{gathered}$	$\stackrel{N}{N}$	$\begin{aligned} & \stackrel{1}{N} \\ & 0 \\ & \underset{\sim}{*} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{N}{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{+}{+} \\ & \stackrel{N}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{1} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{N} \\ & \underset{\infty}{-} \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & N \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & 0 \\ & \text { ले } \end{aligned}$	$\begin{aligned} & \text { O- } \\ & \text { è } \\ & \text { n} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \stackrel{0}{n} \\ & \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { en } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { M } \\ & \text { è } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \infty \\ & 0^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { è } \\ & \text { N- } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { ñ } \end{aligned}$
든 튼	$\stackrel{\sim}{\sim}$	\cdots	へ	へ	$\stackrel{\ominus}{\sim}$	$\stackrel{ \pm}{\sim}$	\hat{m}	$\stackrel{\oplus}{\sim}$	\hat{m}	へ	へ	－	חٌ	$\stackrel{\text { N }}{ }$	N	$\stackrel{\ominus}{\sim}$	প্ল	¢	ㅇ	ल	안	$\stackrel{\odot}{+}$	へ	\bigcirc	へ	－	\bigcirc
$\begin{aligned} & \text { ᄃ } \\ & \stackrel{0}{0} \\ & \frac{5}{d} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { O } \\ & \stackrel{0}{-} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{8} \end{aligned}$	$\stackrel{0}{N}$	안	우N	8	-	ㅇN	$\stackrel{N}{\sim}$	$\underset{\sim}{\circ}$	$\stackrel{\llcorner }{\sim}$	8	-	হ্ণ	$\begin{aligned} & N \\ & { }^{\infty} \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	に	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { Ni } \end{aligned}$	○	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	응	$\stackrel{8}{5}$	$\stackrel{+}{\infty}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\circ}{+}$	8	$\stackrel{\text { 을 }}{\sim}$

 Beg Location

Street ID	Section ID	Beg Location	End Location	Length (FT)	Width (FT)	Area (SF)	PCI
ElmStS	30	Farroll Avenue	Ash Street	1,450	62	89,900	61
ElmStS NB	540	Ash Street	Grand Ave (East)	2,030	31	62,930	82
ElmStS SB	540	E. Grand Ave	Ash St	2,100	31	65,100	80
EmanCt	10	Alpine Street (South)	Cul-de-Sac	480	34	16,320	82
EmeralsByE	10	Rodeo Drive	Cul-de-Sac	446	37	16,502	81
EmeralsByW	10	Rodeo Drive	Cul-de-Sac	465	37	17,205	84
Equestrian	10	James Way	Vista Circle	2,600	37	96,200	34
Equestrian	20	Vista Circle	Noyes Road	1,906	37	70,522	43
FaehAv	10	Halcyon Road (North)	El Camino Real	600	36	21,600	100
FairOaksAv	10	Elm Street (South)	Pecan Street	1,330	41	54,530	70
FairOaksAv	20	Pecan Street	Halcyon Road (South)	1,320	37	48,840	72
FairOaksAv	30	Halcyon Road (South)	PCC E. of Woodland	1,100	57	62,700	64
FairOaksAv	40	PCC E. of Woodland	Valley Road	2,240	60	134,400	90
FairOaksAv	50	Valley Road	PCC @ 101 Overpass	1,680	48	80,640	87
FairOaksAv	60	Traffic Way	PCC @ Hwy 101 bridge	430	36	15,480	91
FairViewDr	10	Grand Avenue	Brighton Avenue	840	37	31,080	45
FairViewDr	20	Brighton Avenue	Cul-De-Sac	300	38	11,400	42
FarmhouseP	10	Grove Court	Hillside Court	400	37	14,800	73
Farnsworth	10	Sunrise Drive	Longden Drive	800	26	20,800	0
FarrollAv	10	City Limit	Elm Street (South)	1,675	44	73,700	91
FarrollAv	20	Elm Street (South)	Victorian Ct	1,100	40	44,000	88
FarrollAv	30	Victorian Ct	Halcyon Road (South)	600	37	22,200	80
FarrollAv	40	Halcyon Road (South)	Cul-De-Sac	300	30	9,000	89
FieldviewP	10	Hillside Court	Grove Court	360	37	13,320	93
FireAccRd	10	Pearwood Avenue	Gularte Road	551	10	5,510	85
FloraRd	10	Coach Road	End of Street	650	38	24,700	96
ForestGlen	10	Woodland Drive	Cul-De-Sac	415	30	12,450	69

Street ID	Section ID	Beg Location	End Location	Length (FT)	Width (FT)	Area (SF)	PCI
FortunaCt	10	Platino Lane	Cul-de-Sac	200	37	7,400	44
GardenSt	10	East Branch Street	End of Street (Creek)	250	24	6,000	27
GardenSt	20	Ide Street	E. Cherry Avenue	1,040	37	38,480	100
GardenSt	30	Cherry Avenue (East)	Grove Court	150	32	4,800	89
GardenSt	40	Garden Street	Garden Street	953	28	26,684	0
GarfielsPI	10	The Pike	Cul-De-Sac	1,243	37	45,991	65
GaynfairTr	10	The Pike	Farroll Avenue	1,620	38	61,560	71
Glenbrook	10	Bakeman Lane (E)	Bakeman Lane (W)	270	20	5,400	0
GlenoakDr	10	Longden Drive	Sunrise Drive	812	25	20,300	0
GoldenWest	10	Farroll Avenue	Cul-De-Sac	642	38	24,396	75
GraceLn	10	Rodeo Drive - Southside	Rodeo Drive - Northside	2,650	29	76,850	84
GraceLn	20	Rodeo Drive	Chaparral Lane	135	37	4,995	95
GrandAvEB	510	City Limit @ COP E. of Oak Park	Juniper St	1,250	38	47,500	86
GrandAvEB	520	Juniper Street	S. Elm Street	1,100	38	41,800	47
GrandAvEB	530	S. Elm St	Halcyon Road	2,800	38	106,400	83
GrandAvEB	540	Halycon Road	ECR (COP @ McDonald)	1,820	30	54,600	76
GrandAvEB	545	ECR (COP @ McDonalds)	PCC @ 101 Overcrossing	700	30	21,000	95
GrandAvEB	550	AC @ Hwy 101 overpass	E. Branch	500	30	15,000	88
GrandAvW	510	East Branch St	PCC @ Highway 101 overpass	500	30	15,000	88
GrandAvWB	515	PCC @ 101 Overcrossing	ECR (COP @ McDonalds)	700	30	21,000	95
GrandAvWB	520	ECR (COP @ McDonalds)	Halcyon	1,850	30	55,500	79
GrandAvWB	530	Halcyon	South Elm St	2,750	40	110,000	82
GrandAvWB	540	South Elm St	Fairview	950	38	36,100	64
GrandAvWB	550	Fairview	City Limit @ COP, E. Oak Park	1,400	38	53,200	76
GreenwoodD	10	Flora Road	End of Street	672	38	25,536	96
GriebDr	10	Meadow Way	CDS	750	22	16,500	0
GroveCt	10	Fieldview Place	Farmhouse Place	375	37	13,875	80

Ј	今	8	－	ㅇ	$\stackrel{\sim}{\wedge}$	8	$\bar{\infty}$	$\stackrel{1}{\sim}$	す	∞	8	\bigcirc	은	\bigcirc	\bigcirc	∞	$\stackrel{+}{+}$	N	¢	$\stackrel{6}{6}$	∞	∞	$\stackrel{1}{\sim}$	∞	8	은	$\stackrel{\infty}{\square}$
	$\left\|\begin{array}{c} 8 \\ \stackrel{8}{N} \\ \frac{1}{6} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \infty \\ N \end{array}\right\|$	$\left\|\begin{array}{l} \mathrm{O} \\ 0 \\ 0 \\ \hline \end{array}\right\|$	$\left\|\begin{array}{l} 8 \\ 0 \\ 0 \\ \hat{0} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} 8 \\ \hline \\ 1 \\ 0 \\ 0 \end{array}\right\|$	$\begin{array}{\|l\|} \hline 0 \\ m \\ 0 \\ 0 \end{array}$	$\left\|\begin{array}{c} \underset{y}{c} \\ \infty \\ \stackrel{-}{m} \end{array}\right\|$	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathbf{Q} \\ \mathbf{N} \\ \end{array}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} 8 \\ \frac{\infty}{5} \end{array}\right\|$	$\begin{aligned} & \hline 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{0} \\ & \hat{6} \end{aligned}$	$\left\|\begin{array}{c} \bar{\jmath} \\ \underset{\sim}{\sigma} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ j \\ j \end{array}\right\|$	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ \tilde{y} \\ \mathcal{F} \end{gathered}\right.$	$\left\|\begin{array}{c} \underset{N}{N} \\ \underset{\sim}{c} \end{array}\right\|$	$\begin{aligned} & \mathrm{o} \\ & \mathbf{y} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{2} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{O} \\ & \mathbf{N} \\ & \underset{\sim}{n} \end{aligned}\right.$	$\left\|\begin{array}{c} 8 \\ 0 \\ \bar{n} \\ \dot{n} \end{array}\right\|$	$\begin{aligned} & \hline \text { O } \\ & \text { O} \\ & \text { O- } \end{aligned}$		$\left\|\begin{array}{c} \infty \\ m \\ \underset{c}{2} \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{0}{0} \\ \hat{0} \\ \underset{\sim}{m} \end{array}\right\|$	－
亲枈	ल	ल	$\stackrel{\odot}{\sim}$	¢	¢	ले	$\bar{\sigma}$	$\bar{\sigma}$	은	N	へ	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\square}$	N	ल	ल	N	$\bar{\sim}$	へ̀	$\stackrel{\sim}{\sim}$	$\bar{\square}$	¢	$\bar{\square}$	ल	σ	ल	ल
		$\underset{N}{N}$	$\begin{array}{\|l\|} \hline 8 \\ \infty \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \frac{\infty}{i} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \frac{\infty}{i} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ \mathbf{o} \\ \text { a } \end{array}$	$\underset{\sim}{N}$	প্শ	$\begin{array}{\|l\|} \hline \mathrm{O} \\ \hline 0 \end{array}$	$\stackrel{\otimes}{\mathrm{N}}$	$\stackrel{9}{7}$	$\stackrel{\sim}{\sim}$	$\stackrel{\Gamma}{N}$	$\stackrel{\circ}{\mathrm{N}}$	$\underset{\sim}{\infty}$	∞	$\begin{array}{\|l} \hline \mathbf{O} \\ \mathbf{N} \\ \stackrel{2}{2} \end{array}$	$\begin{gathered} \underset{\sim}{\underset{~}{v}} \\ \underset{r}{ } \end{gathered}$	$\begin{array}{\|c} \hline \stackrel{y}{0} \\ \hline \end{array}$	$\frac{0}{\overbrace{2}^{\prime}}$	$\begin{array}{\|c} \hline \mathbf{O} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \stackrel{0}{0} \\ & \mathrm{~m} \\ & \stackrel{2}{r} \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & - \end{aligned}$	৪	$\begin{array}{\|c\|c\|} \hline \infty_{0} \\ \underset{\sim}{2} \end{array}$	$\begin{array}{\|l\|} \hline \text { প } \end{array}$	$\stackrel{\bigcirc}{\text { ¢ }}$

Street ID GularteRd GularteRd HaciendaDr HalcynRdNB HalcynRdSB HalcyonRd HalcyonRd HalcyonRd HalcyonRd HalcyonRd HamptonPI HardenSt HarrisonSt HartLn HawkinsCt HiddenOak HillcrestD

 HodgesRd HuasnaRd HuasnaRd HuasnaRd Huckelbery HuebnerLn IdeSt IkedaWa

ত	－	∞	令	\odot	－	8	¢	8	－	\bigcirc	－	8	¢				8	∞	∞	®	¢	囚	\％	－	ス	8	\checkmark	－		0
芴	$\begin{aligned} & \hline 8 \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} \infty \\ \infty \\ \infty \\ \infty \end{gathered}\right.$	-1 $\stackrel{0}{6}$ g		Bos		$\begin{array}{\|c} \hline \stackrel{p}{c} \\ \stackrel{\rightharpoonup}{r} \end{array}$	$\begin{aligned} & \text { N } \\ & \infty \\ & \text { in } \end{aligned}$	$\begin{aligned} & \mathrm{g} \\ & \dot{8} \\ & \text { f } \end{aligned}$	$\begin{array}{\|l\|l} \hline \stackrel{n}{0} \\ 0 \\ i \end{array}$	$\begin{array}{\|c} \hline 0 \\ 0 \\ 0 \\ \text { N } \end{array}$	$\begin{aligned} & \mathrm{g} \\ & \underset{\sim}{2} \end{aligned}$	\％				$\begin{aligned} & \hline \stackrel{8}{2} \\ & 0.0 \\ & \dot{y} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 8 \end{aligned}$	$\stackrel{0}{\stackrel{0}{\mathrm{~N}}}$	$\begin{gathered} \stackrel{N}{N} \\ \stackrel{y}{c} \end{gathered}$	$\begin{gathered} \hline \stackrel{8}{2} \\ \stackrel{0}{0} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8 \\ & \hline 0 \\ & 0 \end{aligned}$	৪	$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & n \end{aligned}$	$\begin{array}{\|c} \hline N \\ \tilde{N} \\ \underset{\sim}{n} \end{array}$	$$	$\begin{array}{\|l} \hline \mathrm{S} \\ \hline \mathrm{O} \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \text { 子 } \end{aligned}$		－8
$\begin{array}{\|l\|} \hline \frac{5}{y} \\ \frac{1}{3} \\ \hline \end{array}$	$\stackrel{\circ}{\circ}$	₹	F	テ	F	F	亏	テ	¢	$\bar{\sim}$	$\stackrel{\circ}{\sim}$	®	ल			\％	è	ल	$\stackrel{\sim}{\sim}$	m	\bar{m}	¢	¢	$\stackrel{\sim}{\sim}$	N	\％	ल	¢		$\stackrel{-}{\sim}$
	－	$\begin{array}{\|l\|l\|} \hline \frac{\infty}{N} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\mathrm{~N}}{\mathrm{~N}} \end{aligned}$				$\begin{array}{\|c\|} \hline \underset{\sim}{c} \\ \underset{r}{c} \\ \hline \end{array}$	$\underset{\sim}{\underset{\sim}{\mathrm{N}}}$	$\underset{\sim}{\infty}$	～ٌم	$\stackrel{\infty}{\sim}$	8	is	）			$\stackrel{\square}{\circ}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty_{0} \end{aligned}$	$\stackrel{\sim}{\sim}$	∞	8	게	앙	$\stackrel{\sim}{\sim}$	\％	$$	N	$\stackrel{\sim}{2}$		－

Street ID	Section ID	Beg Location	End Location
InnesleyDr	10	Longden Drive	Sunrise Drive
JamesWy	10	Oak Park Boulevard	Equestrian Way（COP）
JamesWy	20	Equestrian Way（COP）	Clinton Ct（COP）
JamesWy	30	Clinton Ct（COP）	Rancho Parkway
JamesWy	40	Rancho Parkway	Rodeo Drive
JamesWy	50	Rodeo Drive	Village Glen Drive（COP）
JamesWy	60	Village Glen Drive（COP）	Tally Ho Road
JasminePI	10	Lavendar Lane	Courtland Street
JasminePI	20	Courtland Street	End of Street
JenningsDr	10	Sunrise Drive	Longden Drive
JennyPI	11	James Way	Cul－de－sac
JuniperSt	10	Poplar Street	Grand Avenue
Kingsbury	10	Longden Drive	Sunrise Drive
LaCanada	10	James Way	Rosemary Court
LaCanada	20	Rosemary Court	Vista Drive
LaCrestaDr	15	Huasna Road	Platino Lane
LaderaPI	10	Via La Barranca	Cul－De－Sac
LancasterD	10	The Pike	Elm Street（South）
LaPazCr	10	Platino Lane	Cul－de－Sac
LarchmontD	10	Vernon Street	Westley Street
LaunaLn	10	Los Olivos Lane	End of Stree
LavenderLn	10	Ash Street	End of Street
LaVistaCt	10	The Pike	Cul－De－Sac
LeannaDr	10	Valley Road	City Limit
LedoPl	10	Brighton Avenue	Cul－De－Sac
LeisureDr	10	James Way	Grieb Drive
LemonLn	10	Oak Hill Road	End of Road

Street ID	Section ID	Beg Location	End Location (FT)	Width (FT)	Area (SF)	PCI	
LePointST	10	Nevada Street	Mason Street (North)	850	30	25,500	96
LePointST	20	Mason Street (North)	Tally Ho Road	490	38	18,620	76
LePointST	30	Corbett Cyn	Crown Terrace	1,298	37	48,026	58
LePointST	40	Crown Terrace	End of Street	303	22	6,666	0
LePointTR	10	Branch Street (East)	Crown Hill	126	28	3,528	68
LePointTR	20	Crown Hill	End of Street	300	25	7,500	59
LierlyLn	10	E Cherry Avenue	End of Road	631	12	7,572	0
LilacCt	10	Jasmine Place	End of Street	125	20	2,500	0
LindaDr	10	Bennett Avenue	Brisco Road	1,090	38	41,420	78
LindaDr	20	Brisco Road	Oceanview School	950	28	26,600	70
LindaDr	30	Oceanview School	N. Elm St	180	28	5,040	65
Loganberry	10	Cranberry Street	Courtland Street	470	33	15,510	88
LongdenCt	10	Sunrise Drive	CDS	125	32	4,000	0
LongdenDr	10	Sunrise Drive (W)	Sunrise Drive (E)	1,855	30	55,650	0
LosBerros	10	Valley Rd	Century Ln	830	40	33,200	28
LosCiervCT	10	Vista Drive	Cul-de-Sac	315	29	9,135	88
LosCiervos	11	Vista Drive	Cul-de-Sac	920	29	26,680	88
LosOlivosL	15	Cherry St	End of Street	510	34	17,340	59
MagnoliaDr	10	Sycamore Drive	CDS	1,190	35	41,650	73
MapleSt	10	Elm Street (South)	Walnut Street	950	37	35,150	59
MapleSt	20	Walnut Street	Alder Street	956	37	35,372	52
MariposaCr	10	Platino Lane	Cul-De-Sac	135	36	4,860	49
MasonStN	10	East Branch Street	Le Point Street	400	29	11,600	44
MasonSSS	10	Allen Street	Nelson Street	940	39	36,660	87
MasonStS	20	Nelson Street	East Branch Street	617	39	24,063	85
MatthewWy	10	Andre Drive	La Canada	830	29	24,070	88
MaydockSt	10	Huasna Road	Intersection	245	26	8,970	0

Street ID	Section ID	Beg Location	End Location	Length (FT)	Width (FT)	Area (SF)	PCI
MaySt	10	Mckinley Street	Crown Terrace	800	37	29,600	57
McKinleySt	10	Crown Hill	May Street	736	28	20,608	65
Meadowlark	10	Oak Park Boulevard	Robin Circle	540	37	19,980	39
MeadowWy	10	James Way	CDS	1,100	22	24,200	0
MercedesLn	15	Rodeo Drive	CDS N. of Old Ranch Road	2,110	37	79,840	85
MesaDr	10	Tiger Tail Drive	Cul-De-Sac	1,020	37	37,740	55
MesquiteLn	10	Chaparral Lane	James Way	1,270	37	46,990	83
MillerCR	10	Milller Way	Cul-de-Sac	174	31	5,394	87
MillerWY	10	Le Point Street	End of Street (Gate)	2,220	32	71,040	84
MontegoSt	10	Newport Ave	CDS	1,080	34	36,720	57
MorningRis	10	EOS	Farroll Avenue	900	35	31,500	91
MuirfieldD	10	Sunrise Terrace	CDS	266	30	7,980	0
MulberryLn	10	Magnolia Drive	Sycamore Drive	334	35	11,690	65
MustangCr	10	Equestrian Way	Cul-de-Sac	355	37	13,135	73
MyrtleDR	10	Myrtle St	E. Cherry	620	33	20,460	85
MyrtleSt	10	Garden Street	COP East of Noguera	392	37	14,504	71
MrrtleSt	20	COP East of Noguera	Myrtle Dr	390	23	8,775	100
NelsonSt	10	Traffic Way	Mason Street (South)	970	39	37,830	56
NelsonSt	20	Mason Street (South)	Cul-De-Sac	730	39	28,470	94
NevadaSt	10	East Branch Street	Le Point Street	325	20	6,500	88
NewmanDr	10	Alpine Street (South)	End of Street	560	34	19,040	81
NewportAV	10	Courtland Street	Montego Street	1,080	30	32,400	43
NewportFR	10	Courtland St South of Newport	CDS	1,030	18	18,540	77
NoeISt	10	Oak Park Boulevard	CDS	425	37	15,725	91
NogueraPI	10	Myrtle Street	Cul-De-Sac	386	37	14,282	57
OakHillRd	10	Pearwood Avenue	End of Street	250	24	6,004	0
OakLeafCr	10	Equestrian Way	Cul-de-Sac	250	37	9,250	65

Length (FT)	Width (FT)	Area (SF)	PCI
340	50	17,000	36
800	30	24,000	74
1,300	30	39,130	70
800	23	18,400	21
720	30	21,600	60
800	26	20,800	0
690	37	25,530	82
600	25	15,000	0
1,900	40	76,000	55
674	37	24,938	80
172	34	5,848	87
520	38	19,760	75
900	42	37,800	75
650	37	24,050	97
635	12	7,620	0
1,430	37	52,910	31
1,110	37	41,070	48
135	37	4,995	74
797	37	29,489	90
452	39	17,628	76
630	29	18,270	84
162	29	4,698	89
300	63	18,870	78
200	73	14,600	54
200	160	32,000	85
250	72	18,000	79
270	242	65,286	0

Length (FT)	Width (FT)	Area (SF)	PCI
1,145	37	42,365	42
310	37	11,470	73
550	37	20,350	31
220	37	8,140	48
1,134	36	40,824	71
1,120	37	41,440	59
300	37	11,100	79
125	20	2,500	0
475	37	17,575	43
1,450	29	42,050	88
260	40	10,400	55
275	34	9,350	90
1,620	42	68,040	70
1,880	42	78,960	72
1,060	42	44,520	65
1,050	33	34,650	94
450	29	13,050	85
670	36	24,120	92
1,280	36	46,080	68
1,880	12	22,560	0
140	37	5,180	80
760	28	21,280	86
2,210	37	81,770	61
180	18	3,240	55
400	24	9,600	41
1,970	41	80,770	36
2,100	37	77,700	46

Street ID	Section ID	Beg Location	End Location	Length (FT)	Width (FT)	Area (SF)	PCI
StillwellD	10	East Cherry	Myrtle	590	33	19,470	85
Stonecrest	10	EI Camino Real	Stonecrest Drive	1,182	18	21,276	0
Strawberry	10	Boysenberry St	Courtland St	600	33	19,800	91
Strawberry	20	Courtland St	CDS	365	33	12,045	91
SunriseDr	10	Sunrise Terrace	Longden Drive	3,145	30	94,350	0
SunriseTr	10	Valley Road	End of Street	300	50	15,000	38
SunsetDr	10	Elm Street (South)	Alder Street	2,200	33	72,600	87
SycamoreCT	10	Sycamore Drive	CDS	112	35	3,920	66
SycamoreDR	10	Magnolia Drive	Gaynfair Terrace	710	35	24,850	64
SycamoreDR	20	Gyanfair Terrace	Halcyon Road (South)	900	37	33,300	76
TallyHoRd	10	Highway 227 (Printz Rd)	James Way	1,950	37	72,150	91
TallyHoRd	20	James Way	Le Point	1,700	37	62,900	94
TannerLn	10	Flora Road	Branch Mill Road	658	34	22,372	96
TaylorPI	10	Alpine Street (South)	End of Street	657	34	22,338	80
TempusCr	10	Platino Lane	Platino Lane	1,600	24	38,400	0
ThePike	10	City Limit	Tierra St.	400	54	21,600	77
ThePike	15	Tierra St	S. Elm St	770	60	46,200	80
ThePike	20	Elm Street (South)	Halcyon Road (South)	2,650	40	106,000	77
TierraSt	10	The Pike	End of Street	725	33	23,925	62
TigerTailD	10	Valley Road	CDS	915	37	33,855	48
ToddLn	10	Halcyon Road (South)	Fair Oaks Avenue	680	34	23,120	67
ToyonPI	10	Stagecoach Road	Cul-de-Sac	200	37	7,400	36
TrafficWy	10	Branch Street (West)	PCC at Bridge	250	40	10,000	45
TrafficWy	15	PCC at Bridge	Fair Oaks	1,400	66	91,700	43
TrafficWy	20	Fair Oaks Avenue	Highway 101	930	60	55,800	26
TrafficWyX	10	Traffic Way	Trinity Avenue	750	32	24,000	90
TrafficWyX	20	Trinity Avenue	End of Road	1,423	18	25,614	0

Street ID	Section ID	Beg Location	End Location	Length (FT)	Width (FT)	Area (SF)	PCI
TrinityAv	10	Traffic Way Extension	End of Street	850	30	25,500	50
TurquoiseD	10	LeAnna Drive	LeAnna Drive	1,140	34	38,760	75
ValleyRd	10	Fair Oaks Avenue	City Limit	1,400	43	59,780	70
ValleyRd	20	City Limit N. of Sunrise Tr @ COP	Tiger Tail Dr	675	49	33,075	41
ValleyRd	30	Tiger Tail Rd	City Limit at Bridge	600	60	36,000	49
VardLoomCT	10	Vard Loomis Lane	Cul-de-Sac	118	57	6,726	53
VardLoomLN	10	Huasna Road	Cul-de-Sac	800	37	29,600	43
VerdePI	10	The Pike	Cul-de-Sac	320	37	11,840	72
VernonSt	10	Branch Street (West)	Larchmont Drive	310	37	11,470	18
VernonSt	20	Larchmont Drive	End of Street	160	24	3,840	22
ViaAvante	10	Castillo de Mar	Cul-de-Sac	245	28	6,860	98
ViaBandole	10	Via Vaquero	Avenida de Diamante	3,550	37	131,350	43
ViaBelmonN	10	Castillo del Mar	Cul-de-Sac	177	40	7,080	95
ViaBelmonS	10	Castillo del Mar	Cul-de-Sac	450	28	17,920	98
ViaBerros	10	Valley Road	City Limit	26	11,830	18	
ViaFirenzN	10	Castillo del Mar	Cul-de-Sac	345	28	9,660	96
ViaFirenzS	10	Via Firenze Courte (South)	Castillo del Mar	355	28	9,940	94
ViaLaBarra	10	Tally Ho Road	End of Street	1,250	35	43,750	73
ViaLasAqui	10	Camino Mercado	Palos Secos	1,700	29	49,300	86
ViaLasAqui	20	Palos Secos	CDS	934	29	27,086	85
ViaPoca	10	Rancho Parkway	Via Bandolero	230	37	8,510	68
ViaVaquero	10	Rancho Parkway	Avenida de Diamente	1,700	38	64,600	41
ViaVaquero	20	Avenida de Diamente	Via Bandolero	600	38	22,800	33
Victorian	10	Farroll Avenue	710	37	26,270	91	
VictoriaWy	10	Garfield Place	800	37	29,600	70	
VillageCt	10	Trinity Avenue	Rogers Court	170	36	6,120	49
VillageGle	10	James Way	Cul-de-Sac	1,300	33	42,900	89

Length (FT)	Width (FT)	Area (SF)	PCI
866	37	32,042	85
412	37	15,244	71
1,200	37	44,400	41
1,850	37	68,450	85
200	22	4,400	43
1,386	38	52,668	61
1,200	37	44,400	62
350	28	9,800	28
1,133	16	18,128	0
276	32	8,832	94
1,058	37	39,146	54
434	18	7,812	0
935	30	28,050	0
750	35	26,250	59
140	37	5,180	71
370	36	13,320	89
180	37	6,660	65
650	37	24,050	51
644	37	23,828	54
1,240	37	45,880	63
320	37	11,840	73
105	37	3,885	90
650	35	22,750	55
90	20	1,800	0
1,020	37	37,740	34

Street ID	Section ID	Beg Location	End Location
VirginiaDr	10	Halcyon Road (South)	Woodland Drive
VistaCR	10	Equestrian Way	Cul-de-Sac
VistaDR	10	Equestrain Way	PCC at median
VistaDR	20	PCC at Median	La Canada
WallacePI	10	Maple St	Ash Street
WalnutSt	10	Farroll Avenue	End of Street
WalnutSt	20	Ash Street	Larchmont Drive
WesleySt	10	Branch Street (East)	Campground
WesleySt	20	Larchmont Drive	Cul-de-Sac
WhiteCt	10	Ridgeview Way	EOS
WhiteleySt	15	CDS (South end)	End of Street
WildOatPI	10	Canyon Way	Corbett Canyon Road
WildwoodDr	10	Tempus Circle	Woodland Drive
WillowLn	10	Halcyon Road (South)	CDS
WilsonCt	10	Bakeman Lane	EOS
WiltonPI	10	Vernon St	Cul-de-Sac
WoodlandCT	10	Woodland Drive	CDS
WoodlandDR	10	Virginia Dr	Virginia Dr
WoodlandDR	20	Creekside Drive	Creekside Drive
WoodlandDR	30	Fair Oaks Avenue	Gate End of Street
WoodlandDR	40	Fair Oaks Av	Gate/COP
WoodlandDR	50	Cerro Vista Cr	CDS
WoodPI	10	Dodson Way	End of Street
WysteriaCt	10	Jasmine Place	Stagecoach Road
ZogataWy	10	Gularte Road	

APPENDIX C

Street Saver Scenario Results

1. Budget Scenario \#1 - Maintain Current City Budget
2. Budget Scenario \#2 - Add $\$ 500 \mathrm{~K}$ to Current City Budget
3. Target Driven Scenario ($\mathrm{PCI}=70$) - PCI Summary
4. Target Driven Scenario (PCI=70) - Cost Summary

Scenarios - Network Condition Summary

Interest: 1\%
Inflation: 3\%
Printed: 01/26/2017

Percent Network Area by Functional Class and Condition Category

Condition in base year 2017, prior to applying treatments.

Condition	Arterial	Collector	Res/Loc	Other	Total
I	12.5%	8.0%	29.1%	1.5%	51.2%
II / III	7.1%	6.3%	16.8%	1.0%	31.2%
IV	2.2%	4.3%	9.2%	0.6%	16.4%
V	0.6%	0.2%	0.5%	0.0%	1.3%
Total	$\mathbf{2 2 . 4 \%}$	$\mathbf{1 8 . 9 \%}$	$\mathbf{5 5 . 6 \%}$	$\mathbf{3 . 1 \%}$	$\mathbf{1 0 0 . 0 \%}$

Condition in year 2017 after schedulable treatments applied.

Condition	Arterial	Collector	Res/Loc	Other	Total
I	13.7%	8.0%	29.7%	2.2%	53.5%
II / III	5.9%	6.3%	16.3%	0.5%	29.0%
IV	2.2%	4.3%	9.2%	0.5%	16.2%
V	0.6%	0.2%	0.5%	0.0%	1.3%
Total	$\mathbf{2 2 . 4 \%}$	$\mathbf{1 8 . 9 \%}$	$\mathbf{5 5 . 6 \%}$	$\mathbf{3 . 1 \%}$	$\mathbf{1 0 0 . 0 \%}$

Condition in year 2023 after schedulable treatments applied.

Condition	Arterial	Collector	Res/Loc	Other	Total
I	11.2%	5.8%	23.6%	3.1%	43.7%
II / III	6.1%	3.3%	13.6%	0.0%	23.0%
IV	3.1%	4.6%	12.7%	0.0%	20.3%
V	2.0%	5.2%	5.8%	0.0%	13.0%
Total	$\mathbf{2 2 . 4 \%}$	$\mathbf{1 8 . 9 \%}$	$\mathbf{5 5 . 6 \%}$	$\mathbf{3 . 1 \%}$	$\mathbf{1 0 0 . 0 \%}$

Scenarios - Network Condition Summary

Interest: 1\%
Inflation: 3\%
Printed: 01/26/2017

Scenario: 7 year current + \$500K Annually

Percent Network Area by Functional Class and Condition Category

Condition in base year 2017, prior to applying treatments.

Condition	Arterial	Collector	Res/Loc	Other	Total
I	12.5%	8.0%	29.1%	1.5%	51.2%
II / III	7.1%	6.3%	16.8%	1.0%	31.2%
IV	2.2%	4.3%	9.2%	0.6%	16.4%
V	0.6%	0.2%	0.5%	0.0%	1.3%
Total	22.4%	18.9%	55.6%	3.1%	100.0%

Condition in year 2017 after schedulable treatments applied.

Condition	Arterial	Collector	Res/Loc	Other	Total
I	13.7%	8.6%	30.0%	2.2%	54.4%
II / III	5.9%	5.7%	16.0%	0.5%	28.1%
IV	2.2%	4.3%	9.2%	0.5%	16.2%
V	0.6%	0.2%	0.5%	0.0%	1.3%
Total	22.4%	18.9%	55.6%	3.1%	100.0%

Condition in year 2023 after schedulable treatments applied.

Condition	Arterial	Collector	Res/Loc	Other	Total
I	12.7%	7.5%	25.9%	3.1%	49.2%
II / III	5.5%	3.3%	13.4%	0.0%	22.2%
IV	2.2%	2.9%	10.6%	0.0%	15.7%
V	2.0%	5.2%	5.8%	0.0%	12.9%
Total	22.4%	18.9%	55.6%	3.1%	100.0%

Scenario: 70 PCI (MOD Weighted)				
Objective: Minimum Network Average PCI				
Projected Petwork Average PCI by year Year 2017 Never Treated				With Selected Treatment
2018				

Percent Network Area by Functional Classification and Condition Class

Condition in base year 2017, prior to applying treatments.

| Condition Class | Arterial | Collector | Res/Loc | Other | Total |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 12.5% | 8.0% | 29.1% | 1.5% | 51.2% |
| II / III | 7.1% | 6.3% | 16.8% | 1.0% | 31.2% |
| IV | 2.2% | 4.3% | 9.2% | 0.6% | 16.4% |
| V | 0.6% | 0.2% | 0.5% | 0.0% | 1.3% |
| Total | 22.4% | 18.9% | 55.6% | 3.1% | 100.0% |

Condition in year 2017 after schedulable treatments applied.

Condition Class	Arterial	Collector	Res/Loc	Other	Total
	12.5%	8.0%	31.3%	2.2%	54.0%
II / III	7.1%	6.3%	16.1%	0.5%	29.9%
IV	2.2%	4.3%	7.8%	0.5%	14.8%
V	0.6%	0.2%	0.5%	0.0%	1.3%
Total	22.4%	18.9%	55.6%	3.1%	100.0%

Condition in year 2023 after schedulable treatments applied.

Condition Class	Arterial	Collector	Res/Loc	Other	Total
I	11.2%	11.3%	46.0%	3.1%	71.6%
II / III	3.7%	1.4%	6.0%	0.0%	11.1%
IV	5.6%	1.0%	0.3%	0.0%	6.9%
V	2.0%	5.2%	3.3%	0.0%	10.5%
Total	22.4%	18.9%	55.6%	3.1%	100.0%

City of Arroyo Grande

Scenario: 70 PCI (MOD Weighted)
Objective: Minimum Network Average PCI
Target: Overall 70

Year	Rehabilitation		Preventive	tenance	Total Cost	Deferred
2017	II	\$20,726	NonProject Project	\$457,500	\$1,622,088	\$13,123,473
	III	\$170,622				
	IV	\$973,240		\$0		
	V	\$0				
	Total	\$1,164,588				
	Project	\$0				
2018	II	\$20,988	Non- Project Project	\$368,229	\$2,003,732	\$11,133,419
	III	\$0				
	IV	\$1,559,238				
	V	\$55,277				
	Total	\$1,635,503				
	Project	\$0				
2019	11	\$8,730	NonProject Project	\$230,392	\$2,827,789	\$15,384,215
	III	\$18,548				
	IV	\$2,570,119		\$0		
	V	\$0				
	Total	\$2,597,397				
	Project	\$0				
2020	II	\$574,712	NonProject Project	$\$ 172,310$$\$ 0$	\$3,619,294	\$14,067,448
	III	\$553,107				
	IV	\$2,319,165				
	V	\$0				
	Total	\$3,446,984				
	Project	\$0				
2021	11	\$541,599	NonProject Project	$\$ 75,274$$\$ 0$	\$4,085,103	\$15,674,367
	III	\$938,285				
	IV	\$2,529,945				
	V	\$0				
	Total	\$4,009,829				
	Project	\$0				
2022	II	\$92,924	Non- Project Project	\$153,988	\$3,452,428	\$17,765,578
	III	\$0				
	IV	\$3,162,112				
	V	\$43,404				
	Total	\$3,298,440				
	Project	\$0				

Year		Rehabilitation	Preventive Maintenance		Total Cost	Deferred
2023		II \$273,696	Non- Project Project	\$145,982	\$3,554,655	\$21,669,277
	III	II $\quad \$ 9,990$				
	IV	V \$1,506,439				
		V \$1,618,548				
	Total	l \$3,408,673				
	Project	t \$0				
	Functional Class		Rehabilitation	Prev. Maint.		Summary
	Arterial		\$938,285	\$331,520		
	Collector		\$4,457,766	\$271,002		
	Other		\$161,801	\$24,980		
	Residential/Local		\$14,003,562	\$976,173		
		Total:	\$19,561,414	\$1,603,675	Grand	\$21,165,089

APPENDIX D

Street Saver Cost Projection Input Data ("Decision Tree")
Decision Tree
Printed: 01/25/2017
Cost/Sq Yd, Yrs Between Yrs Between \# of Surface

Treatment
SEAL CRACKS
Light Maintenance
Light Rehab
Heavy Maintenance
Light Rehab
Heavy Rehab
Reconstruct
SEAL CRACKS
Light Maintenance
Light Rehab
Heavy Maintenance
Light Rehab
Heavy Rehab
Reconstruct
SEAL CRACKS
SINGLE CHIP SEAL
MILL AND THICK OVERLAY
DOUBLE CHIP SEAL
HEATER SCARIFY \& OVERLAY
HEATER SCARIFY \& OVERLAY
RECONSTRUCT SURFACE (AC)
DO NOTHING
THICK AC OVERLAY(2.5 INCHES)
RECONSTRUCT STRUCTURE (AC)

RECONSTRUCT STRUCTURE (AC)
Treatment Type
Crack Treatment
Surface Treatment
Restoration Treatment

Restoration Treatment
Crack Treatment
Surface Treatment
Restoration Treatment

Restoration Treatment

Crack Treatment
Surface Treatment
Restoration Treatment

	Good, Non-Load Related
	III - Good, Load Related
	IV - Poor
	V - Very Poor
AC/AC	I - Very Good
	II - Good, Non-Load Related
	III - Good, Load Related
	IV - Poor
	V - Very Poor
AC/PCC	I - Very Good
	II - Good, Non-Load Related
	III - Good, Load Related
	IV - Poor
	V - Very Poor
PCC	I - Very Good
	II - Good, Non-Load Related
	III - Good, Load Related
	IV - Poor
	V - Very Poor

City of Arroyo Grande
Arroyo Grande, CA 93420
(805) 473-5460
кıобәңе ио!!!!puoう

AC/AC

II - Good, Non-Load Related
II - Good, Non-Load Related III - Good, Load Related V - Poor V-

II - Good, Non-Load Related
Printed: 01/25/2017

$$
\begin{array}{lll|l}
\text { Functional Class } & \text { Surface } & \text { Condition Category } & \text { Treatment Type }
\end{array}
$$

$$
\begin{aligned}
& \text { Treatment } \\
& \text { DO NOTHING } \\
& \text { DO NOTHING } \\
& \text { DO NOTHING } \\
& \text { SINGLE CHIP S } \\
& \text { SINGLE CHIP S } \\
& \text { SINGLE CHIP S } \\
& \text { THICK AC OVEF }
\end{aligned}
$$V - Very Poor

$$
\begin{aligned}
& \text { Crack Treatment } \\
& \hline \text { Surface Treatment }
\end{aligned}
$$

Restoration Treatment
THICK AC OVERLAY(2.5 INCHES)
Decision Tree
Cost/Sq Yd, Yrs Between Yrs Between \# of Surface
Decision Tree
Printed: 01/25/2017
Cost/Sq Yd, Yrs Between Yrs Between \# of Surface
 Cost/Sq Yd,
except Seal
Cracks in LF:
 Treatment
SEAL CRACKS
Light Maintenance
Light Rehab
Heavy Maintenance
Light Rehab
Heavy Rehab
Reconstruct
SEAL CRACKS
Light Maintenance
Light Rehab
Heavy Maintenance
Light Rehab
Heavy Rehab
RECONSTRUCT STRUCTURE (AC)
SEAL CRACKS
SINGLE CHIP SEAL
MILL AND THIN OVERLAY
DOUBLE CHIP SEAL
HEATER SCARIFY \& OVERLAY
HEATER SCARIFY \& OVERLAY
RECONSTRUCT STRUCTURE (AC)
DO NOTHING
DO NOTHING
DO NOTHING
DO NOTHING
DO NOTHING
THICK AC OVERLAY(2.5 INCHES)
THIN AC OVERLAY(1.5 INCHES)
STA

City of Arroyo Grande
Arroyo Grande, CA 93420
(805) 473-5460
кıобәңе ио!!!!puoう
Treatment Type
Crack Treatment
Surface Treatment
Restoration Treatment

Crack Treatment
Surface Treatment
Restoration Treatment
Restoration Treatment

Crack Treatment
Surface Treatment
Restoration Treatment
Restoration Treatment
Cr
Su
Re

	II - Good, Non-Load Related
	III - Good, Load Related
	IV - Poor
	V - Very Poor
AC/AC	I - Very Good

	II - Good, Non-Load Related
	III - Good, Load Related
	IV - Poor
	V - Very Poor
AC/PCC	I - Very Good

II - Good, Non-Load Related
III - Good, Load Related
V - Poor
V - Very Poor

II - Good, Non-Load Related
III - Good, Load Related
IV - Poor
V - Very Poor

O

\section*{| 흥 |
| :--- |
| O |
| 0 |}

Decision Tree
Printed: 01/25/2017
Cost/Sq Yd, Yrs Between Yrs Between \# of Surface

Decision Tree
Printed：01／25／2017
Cost／Sq Yd，Yrs Between Yrs Between \＃of Surface

8

City of Arroyo Grande
Arroyo Grande，CA 93420
（805）473－5460

	II－Good，Non－Load Related
	III－Good，Load Related
	IV－Poor
	V－Very Poor
AC／AC	I－Very Good
	II－Good，Non－Load Related
	III－Good，Load Related
	IV－Poor
	V－Very Poor
AC／PCC	I－Very Good
	II－Good，Non－Load Related
	III－Good，Load Related
	IV－Poor
	V－Very Poor
PCC	I－Very Good
	II－Good，Non－Load Related
	III－Good，Load Related
	IV－Poor
	V－Very Poor

кıобәңе ио！！！！puoう
Treatment Type
Crack Treatment
Surface Treatment
Restoration Treatment

－－－
sselo ןeuo！łoun」
Residential／Local
ฉиәшłеә」

Crack Treatment
Surface Treatment
Restoration Treatment
Restoration Treatment

Crack Treatment
Surface Treatment

	II－Good，Non－Load Related
	III－Good，Load Related
	IV－Poor
	V－Very Poor
AC／PCC	I－Very Good

$\stackrel{O}{4}$

AC／AC

Crack Treatment
Surface Treatment
Restoration Treatment

Restoration Treatment

Crack Treatment
Surface Treatment
Restoration Treatment

II－Good，Non－Load Related HEATER SCARIFY \＆OVERLAY
HEATER SCARIFY \＆OVERLAY RECONSTRUCT STRUCTURE（AC） DO NOTHING

DO NOTHING DO NOTHING DO NOTHING
DO NOTHING DO NOTHING
DO NOTHING

THICK AC OVERLAY（2．5 INCHES） THICK AC OVERLAY（2．5 INCHES） SINGLE CHIP SEAL MILL AND THIN OVERLAY MILL AND THIN OVERLAY
DOUBLE CHIP SEAL

$$
\begin{aligned}
& \text { Treatment Type } \\
& \text { Crack Treatment }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Surface Treatment } \\
& \text { Restoration Treatm }
\end{aligned}
$$

$$
\begin{array}{ll|l}
\text { Functional Class Surface Condition Category } & \text { Treatment Type }
\end{array}
$$

II - Good, Non-Load Related

$$
\begin{aligned}
& \text { Treatment } \\
& \text { DO NOTHING } \\
& \text { DO NOTHING } \\
& \text { DO NOTHING } \\
& \text { SINGLE CHIP SE } \\
& \text { SINGLE CHIP SE } \\
& \text { SINGLE CHIP SE } \\
& \text { THICK AC OVER }
\end{aligned}
$$

THICK AC OVERLAY(2.5 INCHES)
Decision Tree
Printed: 01/25/2017
Cost/Sq Yd, Yrs Between Yrs Between \# of Surface
Decision Tree

Кıобәңе) ио!!!

MILL AND THIN OVERLAY SINGLE CHIP SEAL SINGLE CHIP SEAL
THIN AC OVERLAY(1.5 INCHES) THICK AC OVERLAY(2.5 INCHES) RECONSTRUCT STRUCTURE (AC) SEAL CRACKS SINGLE CHIP SEAL MILL AND THIN OVERLAY DOUBLE CHIP SEAL HEATER SCARIFY \& OVERLAY HEATER SCARIFY \& OVERLAY RECONSTRUCT STRUCTURE (AC) SEAL CRACKS SINGLE CHIP SEAL MILL AND THIN OVERLAY DOUBLE CHIP SEAL HEATER SCARIFY \& OVERLAY HEATER SCARIFY \& OVERLAY RECONSTRUCT STRUCTURE (AC) DO NOTHING DO NOTHING DO NOTHING DO NOTHING DO NOTHING THICK AC OVERLAY(2.5 INCHES) THICK AC OVERLAY(2.5 INCHES) Crack Treatment
Surface Treatment
Restoration Treatment
 Crack Treatment
Surface Treatment
Restoration Treatment Restoration Treatment

Crack Treatment
Surface Treatment
Restoration Treatment II - Good, Non-Load Related III - Good, Load Related IV - Poor V - Very Poor I-Very Good

II - Good, Non-Load Related III - Good, Load Related IV - Poor

II - Good, Non-Load Related III - Good, Load Related IV - Poor V - Very Poor I-Very Good

V - Very Poor II - Good, Non-Load Related III - Good, Load Related IV - Poor

Functional Class
$\stackrel{\rightharpoonup}{\oplus}$
$\stackrel{\rightharpoonup}{\square}$
Decision Tree
Printed：01／25／2017
Cost／Sq Yd，Yrs Between Yrs Between \＃of Surface

$$
\text { Condition Category } \quad \text { Treatment Type }
$$

II－Good，Non－Load Related
Restoration Treatment

$$
\begin{aligned}
& \text { Treatment Type } \\
& \hline \text { Crack Treatment } \\
& \hline \text { Surface Treatment } \\
& \hline \text { Restoration Treatmen }
\end{aligned}
$$

$$
\begin{aligned}
& \text { THICK AC OVERLAY(2.5 INCHES) } \\
& \text { THICK AC OVERLAY(2.5 INCHES) } \\
& \begin{array}{l}
7 \forall \exists S \text { dIHO ヨาワNIS } \\
7 \forall \exists \text { dIHO ヨาตNIS }
\end{array}
\end{aligned}
$$

APPENDIXE

Description of Pavement Defects

APPENDIX E: PAVEMENT DEFECT DESCRIPTIONS

1. Alligator Cracking (Fatigue Cracking)
2. Block Cracking
3. Distortions
4. Longitudinal and Transverse Cracking
5. Patching and Utility Cut Patching
6. Rutting/Shoving
7. Weathering
8. Raveling

ALLIGATOR CRACKING (FATIGUE)

Alligator or fatigue cracking is a series of interconnecting cracks caused by fatigue failure of the asphalt concrete surface under repeated traffic loading. Cracking begins at the bottom of the asphalt surface (or stabilized base) where tensile stress and strain are highest under a wheel load. The cracks propagate to the surface initially as a series of parallel longitudinal cracks. After repeated traffic loading, the cracks connect, forming many sided, sharp-angled pieces that develop a pattern resembling chicken wire or the skin of an alligator. The pieces are generally less than $0.5 \mathrm{~m}(1.5 \mathrm{ft})$ on the longest side. Alligator cracking occurs only in areas subjected to repeated traffic loading, such as wheel paths. (Pattern-type cracking that occurs over an entire area not subjected to loading is called "block cracking,' which is not a load-associated distress.)

Severity Levels	Description
Low	Fine, longitudinal hairline cracks running parallel to each other with no, or only a few interconnecting cracks. The cracks are not spalled.
Medium	Further development of light alligator cracks into a pattern or network of cracks that may be lightly spalled.
High	Network or pattern cracking has progressed so that the pieces are well defined and spalled at the edges. Some of the pieces may rock under traffic.

BLOCK CRACKING

Block cracks are interconnected cracks that divide the pavement into approximately rectangular pieces. The blocks may range in size from approximately 0.3 by 0.3 in (1 by 1 ft .) to 3 by 3 in (10 by 10 ft .). Block cracking is caused mainly by shrinkage of the asphalt concrete and daily temperature cycling (which results in daily stress/strain cycling). It is not load - associated. Block cracking usually indicates that the asphalt has hardened significantly. Block cracking normally occurs over a large portion of the pavement area, but sometimes will occur only in non-traffic areas. This type of distress differs from alligator cracking in that alligator cracks form smaller, many-sided pieces with sharp angles.

Severity Levels	Description
Low	Blocks are defined by low* severity cracks.
Medium	Blocks are defined by medium* severity cracks.
High	Blocks are defined by high* severity cracks.

*See severity level of longitudinal and transverse cracking.

DISTORTIONS

Distortions are usually caused by corrugations, bumps, sags, and shoving. They are localized abrupt upward or downward displacements in the pavement surface, series of closely spaced ridges and valleys, or localized longitudinal displacements of the pavement surface. Distortions affect ride quality.

Severity Levels	Description
Low	Distortion produces vehicle vibrations which are noticeable, but no reduction in speed is necessary for comfort or safety, and/or individual distortions cause the vehicle to bounce slightly, but create little discomfort.
Medium	Distortion produces vehicle vibrations which are significant and some reduction in speed is necessary for safety and comfort.
High	Distortion produces vehicle vibrations which are so excessive that speed must be reduced considerably for safety and comfort.

SHOVING

Shoving is a permanent, longitudinal displacement of a localized area of the pavement surface caused by traffic loading. When traffic pushes against the pavement, it produces a short, abrupt wave in the pavement surface. This distress normally occurs only in unstable liquid asphalt mix (cut back or emulsion) pavements.

Shoves also occurs where asphalt pavements abut PCC pavements; the PCC pavement increase in length and push the asphalt pavement, causing the shoving.

Severity Levels	Description
Low	Shove causes low severity ride quality.
Medium	Shove causes medium severity ride quality.
High	Shove causes high severity ride quality.

LONGITUDINAL AND TRANSVERSE CRACKING
Longitudinal cracks are parallel to the pavement's centerline or laydown direction. They may be caused by:

1. A poorly constructed paving lane joint.
2. Shrinkage of the AC surface due to low temperatures or hardening of the asphalt and/or daily temperature cycling.
3. A reflective crack caused by cracking beneath the surface course, including cracks in PCC slabs(but not PCC joints)
4. Decreased support or thickness near the edge of pavement.

Transverse cracks extend across the pavement at approximately right angles to the pavement centerline or direction of laydown. These may be caused by conditions 2 and 3 above. These types of cracks are not usually load- associated.

Severity Levels	Description
Low	One of the following conditions exists. 1. Non-filled crack width is less than $3 / 8$ in (10 mm), or 2. Filled crack of any width (filler in satisfactory condition).
Medium	One of the following conditions exist: 1. Non-filled crack width $3 / 8$ to 3 in (10 to 76 mm), measured on the pavement surface. 2. Non-filled crack of any width up to 3 in (76 mm) surrounded by light and random cracking.
3. Filled crack of any width surrounded by light random	
cracking.	

PATCHING AND UTILITY CUT PATCHING

A patch is an area of pavement that has been replaced with new material to repair the existing pavement.

A patch is considered a defect no matter how well it is performing (a patched area or adjacent area usually does not perform as well as an original pavement section). Generally, some roughness is associated with this distress.

Severity Levels	Description
Low	Patch is in good condition and is satisfactory. Ride quality* is rated low severity or better.
Medium	Patch is moderately deteriorated and/or ride quality is rated as medium severity.
High	Patch is badly deteriorated and/or ride quality is rated as high severity. Patch needs replacement.

*Ride quality is defined in the severity levels of distortions.

RUTTING

A rut is a surface depression in the wheel paths. Pavement up lift may occur along the sides of the rut, but, in many instances, ruts are noticeable only after a rainfall when the paths are filled with water. Rutting is when permanent deformation occurs in any of the pavement layers or subgrades, usually caused by consolidated or lateral movement of the materials due to traffic loading.

Severity Levels	Description
Low	$1 / 2$ to less than 1 in $(13$ to 25 mm$)$
Medium	1 to less than 2 in $(25$ to 50 mm$)$
High	Equal to or greater than 2 in (over 50 mm$)$

WEATHERING AND RAVELING

Weathering and raveling are the wearing away of the pavement surface due to a loss of asphalt or dislodged aggregate particles. These distresses indicate that either the asphalt binder has hardened appreciably or that a poor-quality mixture is present. In addition, raveling may be caused by certain types of traffic, e.g., tracked vehicles. Softening of the surface and dislodging of the aggregates due to oil spillage are also included under raveling.

Severity Levels	Description
Low	Aggregate or binder of the pavement or surface seal has started to wear away. In some areas, the surface is starting to pit. In the case of oil spillage, the oil stain can be seen, but the surface is hard and cannot be penetrated with a coin.
Medium	Aggregate and/or binder have worn away or the original pavement is showing through the surface seal in a few places. The surface texture is soft and can be penetrated with a coin.
High	Aggregate and/or binder have been considerably worn away or much of the surface seal has been lost. The surface texture is very rough and severely pitted. The edge of the pavement has broken up to the extent that pieces are missing within 1 to 2 ft .3 to 6 m$)$ of the edge. In the case of oil spillage, the asphalt binder has lost its binding effect and the aggregate has become loose.

